Exploring the Therapeutic Potential of Dandelion Phytochemicals in Cancer Prevention

Sham Su Zuha and Jaspreet Kaur

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India

Abstract

Cancer remains a significant global health challenge, necessitating the exploration of innovative therapeutic strategies. Apoptosis, a programmed cell death mechanism, plays a crucial role in maintaining tissue homeostasis and preventing the uncontrolled proliferation of damaged or malignant cells. Dandelion has attracted substantial attention due to its purported anticancer properties through apoptosis. These mechanisms encompass the activation of death receptor pathways, modulation of mitochondrial function, interference with survival signaling pathways (such as PI3K/Akt and NF-κB), and the regulation of pro-apoptotic and anti-apoptotic proteins. Furthermore, the intricate crosstalk between dandelion phytochemicals and immune responses, as well as their potential synergy with conventional cancer therapies, is elucidated. The key preclinical and clinical studies investigating the apoptotic effects of dandelion extracts, individual phytochemicals (sesquiterpene lactones, flavonoids, and polyphenols), and their formulations are critically analyzed. The diversity of cancer models, experimental conditions, and methodologies utilized in these studies are examined to provide a comprehensive understanding of the reproducibility and translational potential of the reported findings.

This review provides a thorough examination of the current state of knowledge regarding dandelion’s potential in cancer treatment, offering insights into its mechanisms of action, key findings from studies, and outlining essential objectives for future research in this promising field.

Keywords

Dandelion, Phytochemicals, Apoptosis, Cancer, p53, Flavonoids

Introduction

Apoptosis also known as programmed cell death is a set of biochemical processes characterized by morphological changes and cell death. The process is essential to multicellular organisms of the cell cycle activities including nuclear fragmentation, cell shrinking, mRNA decay fragmentation, and blebbing. During this process, apoptotic bodies are produced which are then utilized by the phagocytic cells to stop their spread which otherwise can be damaging [1]. Dysregulation of a specific apoptotic phase may lead to the development of cancer cells, disrupting the balance between cell division and death. Additionally, tumor metastasis can be prevented by apoptosis by inducing misplaced cell death, which to some extent suppresses tumor formation. Genetic and environmental factors can influence the susceptibility or resistance of cells to apoptosis, disrupting the equilibrium between apoptosis and proliferation. Dandelion extract induces apoptosis, related to endoplasmic reticulum stress in triple-negative breast cancer cells and cervical cancer cells [2].
New therapies for treating and preventing deadly diseases are constantly in demand. Researchers are now exploring naturally derived compounds due to their potential to have fewer toxic side effects compared to current treatments like chemotherapy [3]. The scientific community is focusing on secondary metabolites produced by plants, which are being studied for their ability to fight cancer and create new clinical drugs. As successful compounds have already been developed into standard cancer treatments, new technologies are now emerging to further develop this area. Studies have shown that extracts from *Taraxacum officinale* have anti-tumor properties and can inhibit the growth of cancer cells in various types of cancers such as breast, prostate, colon, and liver cancer [1]. These extracts have also been found to induce apoptosis and inhibit angiogenesis.

T. officinale is a flowering plant belonging to the Asteraceae family and is commonly known as dandelion. It is a perennial herb that is native to Eurasia and North America but is now widely distributed throughout the world. Dandelions have a long history of use in traditional medicine, as well as being a staple in herbal remedies and dietary supplements. The plant has a deep taproot that can grow up to 30 cm in length, and it produces bright yellow flowers that are composed of numerous small petals. The leaves of the dandelion are deeply toothed and can grow up to 30 cm in length. The plant typically blooms from early spring to late fall and produces numerous small, fluffy seeds that are easily carried by the wind [4]. *T. officinale* is a plant that grows from taproots that are usually not branched. It produces several flower stems that are hollow and leafless, with a typical height of 5 - 40 centimeters, but sometimes up to 70 cm tall.

The stems can be purple-tinged, and they produce flower heads that are as tall as or taller than the foliage. The leaves of the plant are all basal, and they may be upright or horizontally spreading, with petioles that are either unwinged or narrowly winged. The stems may have short hairs or be smooth [5]. The plant has milky latex, and each flowering stem has one single flower head without bracts. The flower heads are composed of many florets, which are ligulate and bisexual, with no receptacle bracts. The leaves are oblong, obovate, or oblanceolate in shape, with shallow to deep lobes and toothed margins. The plant produces calyculi, which are cuplike bracts that hold the florets, and they are composed of 12 to 18 segments that are reflexed and sometimes glaucous. The bractlets are lanceolate and in two series, with acuminate apices. The involucres are green to dark green or brownish green, with the tips being dark gray or purplish, and they are 14 - 25 millimeters wide. The florets are yellow or orange yellow in color, and there can be 40 to over 100 per head [6]. The fruits, called cypsela, are oblongoid in shape, ranging in color from olive-green or olive-brown to straw-colored to grayish, and they have slender beaks that are 2-3 mm long. The fruits have 4 to 12 ribs with sharp edges. The pappi, which form the parachutes, are white to silver-white in color and around 6 mm wide. *T. officinale* typically has 24 or 40 pairs of chromosomes, although some have 16 or 32 pairs. The plant produces fruits mainly through apomixis, despite being visited by various types of insects [7].

The plant has multiple applications in culinary practices: the flowers are utilized in the production of dandelion wine, the greens are commonly used in salads, the roots have been transformed into a coffee substitute (after being baked and ground into powder), and Native Americans have historically utilized the plant both as a source of food and medicine. The plant is also rich in nutrients and has been used as a food source throughout history. The leaves are often used in salads, while the roots are roasted and used as a coffee substitute. *T. officinale* is a versatile and widely used plant that has been valued for its medicinal and nutritional properties for centuries. Its widespread availability, coupled with its numerous health benefits, make it a valuable addition to any diet or natural medicine cabinet [8].

The review addresses challenges such as the need for standardized extraction methods and emphasizes the importance of rigorous characterization and clinical trials. Furthermore, it highlights the necessity for a deeper exploration of molecular interactions between dandelion phytochemicals and apoptosis-regulating proteins. Overall, the review seeks to provide a comprehensive understanding of the current knowledge, offering insights into the potential of dandelion-based therapies in cancer treatment and guiding future research in the field.

Phytochemistry of *T. officinale*

T. officinale is rich in phytochemicals, which are bioactive compounds that are beneficial to human health. This section discusses the in-depth phytochemistry of dandelion, including its chemical composition, pharmacological properties, and potential therapeutic uses [9]. Dandelion contains a variety of phytochemicals, including flavonoids, phenolic acids, sesquiterpene lactones, polysaccharides, triterpenoids, and other compounds (Figure 1). These phytochemicals are responsible for the various pharmacological properties of the plant.

Flavonoids

Flavonoids are a class of polyphenolic compounds that are widely distributed in plants, including dandelions. Dandelion contains several flavonoids, including luteolin, apigenin, chrysoeriol, and quercetin. Luteolin is a flavone that has been shown to have antioxidant, anti-inflammatory, and anti-cancer properties. Studies have shown that luteolin can reduce inflammation by inhibiting the production of inflammatory cytokines and enzymes. It can also protect against oxidative...
stress by scavenging free radicals and enhancing the activity of antioxidant enzymes. Chrysoeriol is a flavone that has been shown to have antioxidant, anti-inflammatory, and anti-cancer properties. Studies have shown that chrysoeriol can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival. Chrysoeriol has also been shown to protect against oxidative stress by scavenging free radicals and enhancing the activity of antioxidant enzymes [10].

Phenolic acids

Phenolic acids are a class of compounds that are widely distributed in plants, including dandelions. Dandelion contains several phenolic acids, including chicoric acid, cafffeic acid, and chlorogenic acid. Chicoric acid is a caffeic acid derivative that has been shown to have anti-inflammatory, anti-inflammatory, and anti-cancer properties. Studies have shown that chicoric acid can protect against oxidative stress by scavenging free radicals and enhancing the activity of antioxidant enzymes. It can also reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. Additionally, chicoric acid has been shown to have anti-cancer properties by inhibiting the growth and proliferation of cancer cells and inducing apoptosis [11]. Caffeic acid is a phenolic acid that has been shown to have antioxidant, anti-inflammatory, and anti-cancer properties [12].

Sesquiterpene lactones in dandelion

Sesquiterpene lactones are a class of compounds that are found in many plants, including dandelions. Dandelion contains several sesquiterpene lactones, including taxarinic acid, taxarinic acid methyl ester, and eudesmanolides. Taxarinic acid is a sesquiterpene lactone that has been shown to have anti-microbial, anti-inflammatory, anti-cancer, and hepatoprotective properties. Studies have shown that taxarinic acid can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival [13, 14]. Additionally, taxarinic acid has been shown to have hepatoprotective properties by protecting liver cells from oxidative stress and reducing liver inflammation. Studies have shown that taxarinic acid methyl ester can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival [15]. Additionally, taxarinic acid methyl ester has been shown to have anti-microbial properties by inhibiting the growth and activity of bacteria and fungi. Eudesmanolides are a group of sesquiterpene lactones that have been shown to have anti-inflammatory, anti-cancer, and anti-microbial properties [9]. Studies have shown that they can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. They can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival [16].

Dandelion contains several polysaccharides, including inulin, fructooligosaccharides (FOS), and pectin [9]. Inulin is a type of polysaccharide that is found in many plants, including dandelion. It is a prebiotic fiber that is not digested in the small intestine but rather fermented by the gut microbiota in the large intestine. Inulin has been shown to have several health benefits, including promoting gut health by increasing the number of beneficial bacteria in the gut and improving bowel function. Additionally, inulin has been shown to have a prebiotic effect, which means that it can promote the growth and activity of beneficial bacteria in the gut [17]. Fructooligosaccharides (FOS) are a type of polysaccharide that are like inulin. They are also prebiotic fibers that are not digested in the small intestine but rather fermented by the gut microbiota in the large intestine. FOS has been shown to have several health benefits, including promoting gut health by increasing the number of beneficial bacteria in the gut and improving bowel function. Additionally, FOS has been shown to have a prebiotic effect, which means that they can promote the growth and activity of beneficial bacteria in the gut [18].

Triterpenoids

Triterpenoids are a group of compounds that are widely distributed in the plant kingdom and are known to possess a wide range of biological activities. Dandelion contains several triterpenoids, including taraxasterol, taraxerol, lupeol, and β-amyrin. Taraxasterol is a triterpenoid that has been shown to have anti-inflammatory, anti-cancer, and hepatoprotective properties. Studies have shown that taraxasterol can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes [19]. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival [20].

Lupeol is a triterpenoid that has been shown to have anti-inflammatory, anti-cancer, and anti-microbial properties. Studies have shown that lupeol can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival [21]. Additionally, lupeol has been shown to have anti-microbial properties by inhibiting the growth and activity of bacteria and fungi. β-Amyrin is a triterpenoid that has been shown to have anti-inflammatory and anti-cancer properties. Studies have shown that β-amyrin can reduce inflammation by inhibiting the production of pro-inflammatory cytokines and enzymes. It can also inhibit the growth and proliferation of cancer cells by inducing apoptosis and suppressing the expression of genes involved in cancer cell growth and survival [22] (Table 1).
Apoptosis Targeting by Dandelion in Cancer Treatment: Molecular Perspective

Dandelion (*Taraxacum officinale*) holds promise in cancer treatment by inducing apoptosis, a programmed cell death mechanism, in cancer cells. Its bioactive compounds, including flavonoids and polyphenols, modulate key apoptotic pathways, regulate the cell cycle, disrupt mitochondrial function, and promote oxidative stress selectively in cancer cells [28]. Dandelion anti-inflammatory properties further contribute to its potential in cancer therapy. Research studies across various cancer types have shown its ability to induce apoptosis. Dandelion phytochemicals can activate pro-apoptotic proteins like caspases, while inhibiting anti-apoptotic proteins such as Bel-2. This balance shift towards pro-apoptotic signals promotes apoptosis. Dandelion extracts have been found to induce cell cycle arrest in cancer cells. By interfering with cyclin-dependent kinases (CDKs) and cell cycle checkpoint proteins, dandelion disrupts the cell cycle and promotes apoptosis. Dandelion compounds can disrupt mitochondrial function, leading to the release of pro-apoptotic factors like cytochrome c.

This event triggers the intrinsic apoptotic pathway. Dandelion exhibits antioxidant properties, protecting cells from oxidative damage. However, it can also selectively induce oxidative stress in cancer cells, leading to apoptosis [29]. Chronic inflammation often contributes to cancer progression. Dandelion & anti-inflammatory properties may indirectly promote apoptosis by reducing the inflammatory microenvironment in tumors. Dandelion root extract induced apoptosis in breast cancer cells, suggesting its relevance in breast cancer treatment. Dandelion root extract demonstrated selective cytotoxicity against leukemia cells through apoptotic mechanisms [30]. Several factors can influence the effectiveness of using Dandelion in targeting apoptosis for cancer treatment. These factors include the type and stage of cancer, the variety and preparation of Dandelion, dosage and concentration, patient variability, combination therapies, treatment duration, specific mechanisms of action, patient compliance, the tumor microenvironment, safety considerations, and the availability of clinical trials and research. Understanding and addressing these factors are essential for optimizing the potential of Dandelion as an anticancer therapy and improving treatment outcomes [31]. While research on dandelion and the potential in cancer treatment is promising, several challenges remain. These include the need for extensive clinical trials to establish safety and efficacy, determining optimal dosages and formulations, and understanding specific mechanisms of action in various cancer types.

Experimental Models Demonstrating Effect of Dandelion on Cancer

There is a continuing need for new treatments and preventative measures for deadly diseases. Due to their potential to have fewer hazardous side effects compared to conventional treatments like chemotherapy, researchers are now looking into naturally derived chemicals [3]. The scientific community is focusing on secondary metabolites produced by plants, which are being studied for their ability to fight cancer and create new clinical drugs. As successful compounds have already been developed into standard cancer treatments, new technologies are now emerging to further develop this area. Studies have shown that extracts from this plant have anti-tumor properties and can inhibit the growth of cancer cells in various types of cancers such as breast, prostate, colon, and liver cancer [1]. These extracts have also been found to induce apoptosis and inhibit angiogenesis. Scientists conducted a study to investigate the effectiveness of an aqueous extract from dandelion root in killing cancer cells in colon cancer cell models.

The results showed that this extract selectively induced programmed cell death in more than 95% of colon cancer cells within 48 hours of treatment, regardless of their p53 status. In addition, in-vivo studies confirmed the anti-cancer efficacy of this extract as oral administration significantly inhibited the growth of human colon xenograft models by more than 90%. The study also revealed the activation of multiple death pathways in cancer cells by dandelion root extract treatment, as indicated by the expression of genes related to programmed cell death seen in gene expression analyses. Overall, these findings suggest that the dandelion root extract has promising potential as an effective treatment for colon cancer, although further research is needed to confirm its safety and efficacy in humans [32]. Researchers conducted a study to investigate the antiproliferative activity of Methanolic extracts of dandelion root (MEDr) on several cell lines, including HepG2, MCF7, HCT116, and normal Hs27.

The study found that the MEDr significantly reduced the growth of the HepG2 cell line, while its effects on MCF7 and

Table 1: Various phytochemicals of *T. officinale* and their biological importance.

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Chemical class</th>
<th>Biological activity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td>Flavones, flavonols, flavanones</td>
<td>Antioxidant, anti-inflammatory, anticancer, hepatoprotective</td>
<td>[23]</td>
</tr>
<tr>
<td>Phenolic acids</td>
<td>Hydroxycinnamic acids</td>
<td>Antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-cancer</td>
<td>[24]</td>
</tr>
<tr>
<td>Sesquiterpene lactones</td>
<td>Germacranolides, eudesmanolides</td>
<td>Anti-inflammatory, anticancer, anti-microbial</td>
<td>[13]</td>
</tr>
<tr>
<td>Triterpenoids</td>
<td>Taraxasterol, taraxerol, lupeol, β-amyrin</td>
<td>Anti-inflammatory, anticancer, hepatoprotective, anti-microbial</td>
<td>[25]</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>Inulin, levulin</td>
<td>Prebiotic, immunomodulatory, hepatoprotective</td>
<td>[25]</td>
</tr>
<tr>
<td>Vitamins</td>
<td>A, C, K</td>
<td>Antioxidant, immune support, bone health, vision, anti-cancer</td>
<td>[26]</td>
</tr>
<tr>
<td>Volatile oils</td>
<td>Eudesmanolides, germacrdenolides, germacrenes</td>
<td>Anti-inflammatory, anti-microbial, antioxidant, anti-cancer</td>
<td>[27]</td>
</tr>
</tbody>
</table>

Cancer Treatment: Molecular Perspective
HCT116 cell lines were less pronounced. No effect was observed on the H227 cell line. The study also found that MEDr enhanced the phosphorylation level of AMPK in HepG2 cells, which is important in cancer treatment and metabolic diseases. This activation of AMPK by MEDr had not been reported previously. Furthermore, the results regarding the number of apoptotic cells in HepG2 cells were consistent with the cell viability test. These findings suggest that MEDr may have therapeutic potential in treating certain types of cancer, particularly liver cancer, although further research is needed to confirm these findings and to investigate its safety and efficacy in humans [33]. While the research is still in its early stages, the promising results suggest that *T. officinale* may have therapeutic potential as an alternative or complementary treatment for cancer (Table 2). However, further research is needed to understand its mechanisms of action and to determine its safety and effectiveness in humans.

Furthermore, in a study the components and metabolites of dandelion that were absorbed in rat plasma and using a network pharmacology approaches the multi-target mechanisms of dandelion in treating triple-negative breast cancer (TNBC) were predicted validating the beneficial effects of dandelion in regulating the cell-cycle signaling pathway and cell metabolism in TNBC [34]. One more study reported dandelion extract caused programed cell death in various cancer cells, including leukemia, prostate, pancreatic and colorectal cancer cells. Mechanism may involve activating cellular stress machinery and sensitizing cancer cells to advance to apoptosis due to increased levels of ROS. Sesquiterpene lactones present in dandelion offer an excellent prospect for cancer cure as an alternative method to manage cancer. Sesquiterpenoids have an ability to restrict the cellular progressions such as the cell cycle, mediate carcinoma cell inhibition through programmed cell death [30]. *T. officinale* extracts have been tested for their effect on the invasive behavior of tumor cells, specifically C4-2B LNCaP cells and MCF-7/AZ cells.

The Type I collagen invasion assay was used to determine the effect, and it was found that the *T. officinale* sheet inhibited the invasiveness of the C4-2B LNCaP cells but had no effect on the MCF-7/AZ cell invasion. This suggests that *T. officinale* extracts may have potential as a therapeutic agent for inhibiting the invasive behavior of certain types of tumor cells. The aggressive and drug-resistant human chronic myelomonocytic leukemia cells MV-4-11, HL-69, and U-937 have been shown to be particularly susceptible to dandelion root extract’s powerful anti-tumor capabilities. Normal human fibroblasts and non-cancerous peripheral blood mononuclear cells (ncPBMCs) did not experience this reported impact, which was specific to tumor cells [35].

<table>
<thead>
<tr>
<th>Part of a plant</th>
<th>Concentration</th>
<th>Cancer type</th>
<th>Significant findings</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>2.5 mg/mL</td>
<td>Melanoma</td>
<td>Human cancer cells were treated with dandelion root extract (DRE), which was reported to decrease cell viability over time and in a dose-dependent manner in A375 melanoma cells.</td>
<td>[28]</td>
</tr>
<tr>
<td>Root</td>
<td>0.4 mg/mL and 0.6 mg/ml</td>
<td>Leukaemia</td>
<td>In human leukemia cell lines, aqueous DRE efficiently promoted apoptosis in a dose- and time-dependent manner. Early caspase-8 activation and the subsequent caspase-3 activation suggest that DRE may be causing receptor-mediated or extrinsic apoptosis.</td>
<td>[28]</td>
</tr>
<tr>
<td>Root</td>
<td>5.0 mg/mL</td>
<td>Pancreatic Cancer</td>
<td>Pancreatic cells BxPC-3 and Panc-1 were responsive to aqueous DRE. Apoptosis is selectively induced by this extract in a dose- and time-dependent manner. The mitochondrial membrane potential collapsed because of dandelion root extract, triggering pro death autophagy. At comparable concentrations, normal human cells were resistant.</td>
<td>[28]</td>
</tr>
<tr>
<td>Root</td>
<td>4 mg/mL</td>
<td>Prostate cancer</td>
<td>Significant apoptotic induction was seen with DRE treatments starting at 4 mg/mL. In a dose- and time-dependent manner, aqueous DRE was able to cause prostate cancer cells to undergo apoptosis. Additionally, it was shown that the treatment is selective for prostate cancer and has little to no impact on healthy, normal cells.</td>
<td>[29]</td>
</tr>
<tr>
<td>Root</td>
<td>2 mg/mL and 3.5 mg/mL</td>
<td>Prostate cancer</td>
<td>Following the DRE treatment, it was seen that the viability of the colorectal cancer cells HT-29 and HCT116 had significantly decreased. The normal NCM460 cells were DRE refractive and did not reduce their metabolic activity or viability when exposed to the same doses and time points as the colon cancer cells, confirming once more that DRE is selective for cancer cells.</td>
<td>[29]</td>
</tr>
<tr>
<td>Whole plant</td>
<td>0.2 mg/mL, 0.25 mg/mL, and mL</td>
<td>Gastric cancer</td>
<td>Dandelion extract may regulate the expression of the genes for Bax, Bcl2, Survivin, Pten, and Erk to reduce SGC-7901 cell proliferation and promote apoptosis. These findings point to the potential of dandelion extract as an alternate treatment for people with gastric cancer.</td>
<td>[36]</td>
</tr>
<tr>
<td>Whole plant</td>
<td>200 mg/L</td>
<td>Prostate cancer</td>
<td>It was demonstrated that dandelion polysaccharides (DP) dramatically reduced Hepatocellular carcinoma (HCC) cell proliferation both in vitro and in vivo and promoted cell death. By blocking the PI3K/AKT/mTOR pathway and boosting the immune system, dandelion polysaccharides have an antitumor effect on hepatocellular carcinoma.</td>
<td>[37]</td>
</tr>
<tr>
<td>Leaves</td>
<td>25, 50, and 100 µg/mL</td>
<td>Cervical cancer</td>
<td>Taraxacum officinale (TO) leaves ethanol extract ranging from 6.25 to 100 g/mL for 24 hours revealed that TO is an efficient induction of apoptosis in cervical cancer stem cells by down-regulation of Sox2 expression and elevated RAR2 gene expression.</td>
<td>[38]</td>
</tr>
</tbody>
</table>
Safety and Potential Side Effects

Dandelion phytochemicals show promise as apoptosis target molecules for cancer treatment due to their ability to induce programmed cell death in cancer cells. While limited clinical data suggest that dandelion is generally safe for human consumption, more extensive studies are needed to establish its safety profile conclusively. Limited clinical trials have explored the safety of dandelion phytochemicals in humans, primarily focusing on dandelion root extracts and supplements. These studies have generally reported dandelion to be safe, with few adverse effects [39]. However, larger, and more rigorous trials are needed to establish safety conclusively. Preclinical animal studies have provided evidence of the safety of dandelion extracts. In most cases, animals tolerated dandelion treatments well, and no significant toxicities were observed. Some studies even suggested potential protective effects against toxic substances.

While dandelion is generally considered safe, some individuals may experience mild side effects, including gastrointestinal disturbances such as diarrhea, stomach cramps, or allergic reactions. These side effects are typically rare and occur at high doses. It is essential to consider potential interactions with medications and other medical conditions when using dandelion supplements or extracts. Dandelion may interact with blood-thinning medications, diuretics, and diabetes medications. People who are allergic to plants from the Asteraceae family (e.g., ragweed) should take caution while using dandelion products [29]. According to a study, DRE prevents noncancerous NHF cells from going through the apoptotic process. These findings demonstrate that DRE preferentially kills malignant cells while being harmless to healthy cells. It is commonly recognized that many chemotherapies have very serious side effects, mostly because these medications do not target solely cancer cells and occasionally only work at extremely large doses. Additionally, cancer cells, particularly those of the pancreas, become resistant to traditional chemotherapies [29]. Overall, dandelion holds potential as a natural and low-toxicity adjunct to conventional cancer therapies, but further research is warranted to validate its safety and efficacy for specific cancer types and patient populations.

Future Prospective

Dandelion research has a promising future potential. The possible anticancer effects of dandelion have drawn attention, especially in laboratory and animal research. To find new cancer treatments, researchers are eager to learn more about this fascinating plant. As science and technology develop, we can anticipate more in-depth investigations to clarify the precise methods by which dandelion chemicals interact with cancer cells, opening the door for targeted treatments. As it has been demonstrated that DRE has the potential to induce apoptosis and autophagy in human pancreatic cancer cells with no significant effect on noncancerous cells. This will provide a basis on which further research in cancer treatment through DRE can be executed.

However, it is crucial to proceed cautiously while discussing the potential of dandelion in cancer. It is a challenging task to go from encouraging preclinical discoveries to efficient clinical therapy. In-depth clinical trials on humans are required to evaluate safety, dose, and effectiveness. Future studies must also examine the possibility for improved patient outcomes and a reduction in adverse effects from current cancer treatments when dandelion-based therapies are used in conjunction with them. The regulatory approval procedure will also be crucial in defining the dandelion’s future place in cancer treatment, with the possibility that it may turn into a useful tool for oncologists. The future of dandelion in cancer will depend heavily on patient education and awareness. Patients should be aware about the changing landscape of cancer therapy alternatives, including potential all-natural treatments like dandelion, as research advances. The future of dandelion in cancer will depend on ongoing research, collaboration, and a dedication to thoroughly evaluating its therapeutic potential, providing promise for novel and all-encompassing cancer treatment methods in the years to come.

Conclusion

This comprehensive review paper has provided valuable insights into the potential therapeutic impact of dandelion and its phytochemical constituents in the treatment of cancer. Exploring the therapeutic potential of Dandelion phytochemicals in cancer prevention shows promise, with evidence indicating their ability to hinder various aspects of cancer development. However, significant challenges remain. Rigorous clinical trials are needed to validate efficacy across different cancer types and populations, and understanding the molecular mechanisms, ensuring safety, and addressing potential interactions with existing treatments are crucial. Collaboration among researchers, clinicians, and the pharmaceutical industry is essential for the translation of Dandelion-based therapies from the lab to the clinic. Successfully overcoming these challenges could contribute to a new and effective approach to cancer prevention and treatment.

The translation of these findings into practical cancer treatments is an exciting but complex endeavor that necessitates further investigation. Rigorous clinical trials are needed to ascertain the safety and efficacy of dandelion-based therapies in human cancer patients. Nonetheless, the accumulating data and insights presented in this review underscore the potential of dandelion and its phytochemicals as a supplementary or complementary approach in cancer treatment. By continuing to explore this avenue of research, we may unlock innovative and less invasive therapeutic strategies to enhance the overall care and outcomes for individuals grappling with cancer. In this pursuit, collaboration among researchers, clinicians, and the pharmaceutical industry is crucial to harness the full therapeutic potential of dandelion in the fight against cancer.

Acknowledgements

None.

Conflict of Interest

None.
References
3. Altun I, Sonkaya A. 2018. The most common side effects experienced by patients were receiving first cycle of chemotherapy. *Iran J Public Health* 47(8): 1218-1219.

