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Abstract
Recent advancements in agricultural technology and the increasing challeng-

es posed by food scarcity have prompted growers to seek enhanced control over 
environmental conditions to optimize plant growth. In this context, crop simula-
tion models have emerged as a valuable tool for developing innovative crop man-
agement systems, garnering significant interest from researchers over the years. 
This article explores the opportunities and applications of various crop models in 
addressing critical agricultural and environmental concerns. The key highlights 
include Climate Change Impact Assessment: Crop models play a pivotal role in 
assessing the potential impacts of climate change on agricultural systems, allow-
ing for proactive adaptation and mitigation strategies. Fertilizer Management: 
Crop models enable precise fertilizer management, ensuring optimal nutrient ap-
plication and minimizing environmental impacts, such as nutrient runoff. Yield 
Prediction: Accurate yield predictions facilitated by crop models empower farm-
ers to make informed decisions regarding planting, harvesting, and marketing 
their crops. Irrigation and Phenological Studies: Crop models aid in the efficient 
management of irrigation resources, contribute to water conservation, and of-
fer insights into plant phenology, enabling better timing for various agricultural 
practices. Disease and Pest Forecasting: Crop models are instrumental in predict-
ing disease and pest outbreaks, allowing timely intervention strategies and reduc-
ing crop losses. The upsurge in technological advancements in agriculture and 
growing concerns related to food scarcity have elevated the need for advanced 
environmental control for optimal crop growth. Crop simulation models have 
emerged as a powerful tool, with applications spanning climate change impact 
assessment, fertilizer management, yield prediction, irrigation and phenological 
studies, as well as disease and pest forecasting. The research outlined in this article 
underscores the multifaceted opportunities and applications of crop models in 
addressing critical agricultural and environmental challenges, emphasizing their 
significance in fostering sustainable and resilient farming practices.
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No poverty, Zero hunger 

Introduction
There is a need to increase crop production and productivity to feed the 

growing global population in the future. As the world's population grows, food 
production must keep up with demand. Farmers must adopt more efficient farm-
ing techniques, such as precision agriculture, and use new genetic modification 
technologies to increase crop yields and productivity. The most effective crop 
management strategies can be adopted to achieve this goal. Additionally, new 
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will respond to different environmental conditions and decide 
how best to manage their farms for optimal yield. To calculate 
crop yield the first model described the photosynthetic rates of 
crop canopies to calculate the crop yield. This model was then 
improved by incorporating other factors, such as the effects of 
soil fertility and water availability. With this additional infor-
mation, the model was able to predict crop yields. The model 
has also been refined as new data and technologies become 
available. Today, crop growth models inform farmers how to 
manage their farms for optimal yield. According to Monteith 
[4], a crop model is a set of measurable factors that predicts 
a crop's growth, development and yield under a given set of 
genetic features and environmental variables. 

It is believed that Ceres, Oryza, Crop grow, and Info 
crops are some of the most popular models currently in use. 
These models allow farmers to predict the yield of their crops 
based on the available resources, such as soil fertility, tem-
perature, and water availability, as well as the genetic features 
of the crop. This allows them to make informed decisions 
about managing their farms for maximum productivity and 
efficiency. The International Benchmark Sites Network for 
Agro-technology Transfer (IBSNAT) was a U.S. Department 
of Agriculture-funded project initiated in 1982 that mainly 
focused on expanding a modeling project focused on tropical 
and sub-tropical regions worldwide. 

The goal of IBSNAT was to develop and evaluate 
agro-techniques that could be used in those regions to im-
prove crop production. They also tested and monitored soil 
and water resources and studied the effects of climate change 
on agricultural production. It was developed to enter, store and 
manipulate various kinds of data related to soil, weather, and 
crops to run a crop simulation model and analyze the out-
put of the crop simulation model. To develop crop production 
strategies in rice (Rajendra Mahsuri - variety) for the state of 
Bihar, India, have used a CERES-DSSAT (Decision Support 
System for Agrotechnology Transfer) model to develop a crop 
production strategy in this variety. The model considers soil 
type, weather conditions, and crop characteristics to simulate 
crop growth. The model also allows users to adjust parame-
ters such as fertilizers, irrigation, and other inputs to optimize 
their yield. This information lets users develop crop production 
strategies tailored to their specific environment.

Different Types of Models
Statistical models 

This model quantifies and expresses the relationship be-
tween yield parameters, yield, and weather elements by utiliz-
ing statistical techniques such as step-down regressions and 
correlations within this model. By doing so, this model can 
accurately predict crop yield and productivity while consider-
ing variations in weather conditions [5]. 

Mechanistic models 

Mechanical models can describe a system in terms of its 
low-level attributes and explain the relationship between cli-
matic factors and crop yields on a large scale. This allows for 
identifying patterns and elements to help farmers optimize 

varieties of crops need to be developed that are more resistant 
to disease and can tolerate different climate conditions, there-
by allowing farmers to increase their yields and productivity. 
Furthermore, more sustainable farming practices, such as cov-
er crops and crop rotation, can help improve soil health and 
increase yields [1]. By taking all of these steps, farmers can 
work to ensure that food production can meet the needs of a 
growing population. 

As a result, field experiments used to evaluate such studies 
were time-consuming, resource-consuming, tiring, and expen-
sive [2]. Cover crops help preserve topsoil and replenish nu-
trients, while crop rotation prevents soil from depleting par-
ticular nutrients. Combined with other sustainable practices, 
such as minimal or no-till farming, these techniques can help 
farmers improve their yields, reduce costs, and ensure food 
security for a growing population. Crop models can be used 
as an alternative tool to assist in formulating and analyzing 
the best management practices. Crop models use mathemati-
cal algorithms to simulate the growth of crops under different 
conditions. These models can be used to estimate the effects 
of various management practices on the growth and yield of 
crops and to inform farmers about their decisions better. The 
models can also identify the optimal combination of practices 
for a given environment and assess the potential benefits of 
sustainable practices on yields, such as cover crops and crop 
rotation. In the scientific world, a model is a mathematical 
expression or set of equations depicting a system's behavior. 
It assists scientists by allowing them to understand how soil, 
plants, and the atmosphere interact. By simulating various sce-
narios, the models can predict the effects of different manage-
ment practices on crop yields and soil health, helping farmers 
make informed decisions about what sustainable practices to 
adopt [3]. 

The models also allow scientists to assess how different 
environmental factors, such as temperature, rainfall, and soil 
nutrients, affect crop yields. Predicting future performance re-
quires a combination of past and present weather and crop data. 
It can include events such as emergence, flowering, fruiting, 
maturity, and harvesting, in addition to phonological events 
such as flowering and fruiting. By understanding the impact of 
these environmental factors, scientists can develop strategies 
to optimize crop yields, such as using fertilizers, irrigation, and 
pest control. In addition, they can identify areas that are more 
likely to experience crop failure due to unfavorable conditions 
and plan accordingly. It is possible to use crop weather mod-
els to show how the weather and climate affect crops' growth, 
development, and yield. By considering things like tempera-
ture, rainfall, light, and wind speed, scientists can predict the 
conditions that will be most favorable for crop growth and the 
conditions that will lead to crop failure. By understanding the 
relationship between the environment and crop growth, they 
can make informed decisions about managing their farms and 
maximizing their yield. When de Wit began his work on crop 
growth models during the 1960s, a new era was about to begin 
in agriculture. 

Crop growth models help farmers understand how cli-
mate, soil, and other environmental factors affect their crops. 
Using these models, farmers can anticipate how their crops 
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crop yields. Consequently, these models can mimic a partic-
ular situation's appropriate physical, chemical, or biological 
conditions. They effectively explain how a crop responds to a 
specific problem and why it does so. Consequently, these mod-
els provide a powerful tool for farmers to identify strategies to 
maximize crop production effectively [6].

Deterministic models 

In the models, the exact value of the yield or dependent 
variable is evaluated without considering associated probabil-
ity distributions, variances, or random factors. This approach 
may lead to inaccurate results if random factors are not con-
sidered. They also have defined coefficients.

Stochastic models 

Stochastic models are used when the data set has high 
variability or uncertainty. A probability factor is attached to all 
the outputs so that each group of inputs will provide different 
results with probabilities.

Dynamic models

In this model, time is involved as a variable. As a result, 
both dependent and independent variables have constant 
values over a given period. This dynamic approach offers in-
creased depth, as it allows for consideration of both short and 
long-term effects and any potential changes in the system over 
time.

Static 

It should be noted that time is not considered a variable. 
An independent variable has the same value over a given pe-
riod as a dependent variable. However, time can still impact 
the dependent variable, as it may change over the period the 
variable is being studied.

Simulation models 

Simulation models can be computer programs or math-
ematical representations of a real-world system, depending 
on the application. The prime objective of crop simulation 
models is to estimate crop responses regarding weather, soil 
conditions, and crop management as a function of these fac-
tors. Using one or more sets of differential equations, they can 
calculate both the rate and the state variables over time. This is 
typically from planting until harvest maturity or harvest time. 
Additionally, these models aid in making crop management 
decisions, including predictions regarding optimal planting 
dates, irrigation scheduling, and nutrient management.

Calibration and Validation of Crop 
Simulation Models

As a prerequisite for simulating crop growth and produc-
tion under multiple management options and different cli-
matic conditions, crop simulation models need to determine 
the genetic coefficient of a specific crop cultivar to affect crop 
growth and production. The genetic coefficient helps to deter-
mine the growth and development stage of the crop, as well 
as its yield potential and response to environmental factors. It 
is an integral part of the crop simulation model, as it provides 
the basis for estimating the potential yield of a crop under 

different management and environmental scenarios. Genetic 
coefficients must be calibrated and validated for crop models 
to succeed to ensure their accuracy. This is because the genetic 
coefficient helps to account for the variability in a crop’s re-
sponse to environmental factors, such as water, temperature, 
and light. 

Additionally, these coefficients can be used to determine 
the optimal management practices for a particular crop, such 
as planting date, fertilizer application, and irrigation manage-
ment. This can help farmers maximize their crops' yield and 
reduce input costs. Biological coefficients are mathematical 
constructs designed to mimic the phenotypic outcomes of 
genes under different environments. By using physical coef-
ficients, farmers can accurately predict the yield of their crops 
with a given set of environmental conditions. This helps them 
to plan their management practices accordingly and to make 
informed decisions about their inputs, such as fertilizer and ir-
rigation that will maximize the yield of their crops and reduce 
input costs. As part of the calibration process, the model is fed 
with actual data, and it is compared with a set of genetic coef-
ficients and a set that shows the maximum agreement with the 
real data and is chosen as the genetic coefficient that is most 
suitable for the calibration process. This is done to optimize 
the model for the given data set and to ensure that the model 
can accurately predict future outcomes based on current data. 

The genetic coefficients serve as a sort of "blueprint" for 
the model and help it to make more accurate predictions. There 
are specific tools available for this purpose. The Genotyping 
Coefficient Calculator is a tool used as part of the agro-tech-
nology transfer (DSSAT) decision support system. To validate 
the models that have been developed, specific statistical mea-
sures can be used to demonstrate that they have been tested. 
The Geno typing Coefficient Calculator allows for the analy-
sis of genetic coefficients, which helps to identify the factors 
that influence the outcome of the models. It provides a way to 
quantify the strength of the relationship between the data and 
the model's predictive ability. Statistical measures can then be 
used to confirm the model's accuracy, such as the R2 statistic 
or the root mean squared error (RMSE). As a part of their 
study Vysakh et al. [7] used RMSE and the d-stat index to 
validate the genetic coefficients developed using the CERES 
rice model for two rice varieties ( Jaya and Jyothi) of Kerala. 
The model could predict the phenophase and yield accurately 
for both types. A model is efficient if the model D-stat value 
reaches unity and the RMSE reaches zero [8].
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Where, Oi: Observed value, Pi: Predicted value, Oi average: 
average of observed value, n: total number of observations.

This step of calibration and validation is the first step in 
crop modeling. Proof using multi-year and spatial data offers 
better accuracy and model performance. 
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Opportunities of Crop Modeling in 
Agriculture

The use of crop simulation models has a wide range of ap-
plications in the agricultural sector, which includes the man-
agement of cropping systems, stock formation, and the design 
of agricultural policies. Crop simulation models predict yields 
and other crop performance indicators under different envi-
ronmental conditions. They can also identify potential prob-
lems in the production system and provide insights into op-
timizing production and managing resources more efficiently. 
It is possible to compare different crop models using these 
mathematical models; they can also be used for testing the 
variability of crop models according to climatic factors such as 
CO2 levels, rainfall, etc., with the help of these mathematical 
models. Mathematical models can be used to simulate the im-
pact of different factors on crop yields and to identify changes 
in crop production due to climate change. By running simula-
tions, it is possible to evaluate the effects of other variables on 
crop yields and identify improvement areas. 

These models can also be used to compare different crop 
varieties and to analyze the impact of different management 
practices on outcomes. If crop models are run against observed 
data, the model's performance can be improved, providing a 
more accurate response to genetic and climatic factors. This 
can be used to develop strategies for sustainable agriculture, 
identify optimal planting times, and assess the impact of dif-
ferent management practices on crop yields. It also enables 
farmers to compare different crop varieties and identify areas 
for improvement in their current practices. To assess the im-
pact of other climatic conditions on crop production and food 
security of a particular region, crop models should be calibrated 
with climatic and economic models according to the different 
climatic conditions in that region. The models can help farm-
ers accurately predict yields, identify areas of improvement in 
their current practices, and plan for future crop production. 

Additionally, it can help to assess the impact of changes in 
climate on crop production and food security, as well as pro-
vide insight into the economic effects of climate change in a 
particular region. It is the responsibility of crop modellers to 
collect soil and weather data to understand, develop, and eval-
uate the adaptation and mitigation strategies under future cli-
matic conditions. They work with agronomists, soil scientists, 
plant scientists, etc., to create successful models for different 
regions. By collecting soil and weather data, crop modellers 
can identify patterns and trends in the data that can be used 
to inform and improve the models. This data can also be used 
to develop and evaluate strategies to help farmers adapt to a 
changing climate and mitigate the effects of climate change. 
In the following sections, we will discuss the application of 
models in climate change impact assessment, yield prediction, 
the development of fertilizer management practices, pest and 
disease forewarning, phenology and irrigation studies, and the 
management of natural resources. 

By using models to simulate different climate scenarios, 
researchers can better understand the potential impacts of cli-
mate change on agricultural production, which can then be 
used to inform strategies to help farmers adapt to a changing 

climate. Additionally, this data can be used to develop strate-
gies for improved irrigation, fertilizer management, pest and 
disease control, and the management of natural resources.

Impacts of Climate Change on Crops
There is a direct correlation between the productivity of 

crops and the security of food. This is adversely impacted by 
extreme weather events, such as high temperatures and irreg-
ular rainfall distribution caused by climate change. As extreme 
weather events become more frequent, crops will be exposed 
to a more significant risk of being damaged, resulting in lower 
yields and decreased food availability. This can lead to a food 
shortage, resulting in higher prices and reduced food security. 
To evaluate the impact of climate change on agriculture, cli-
mate and crop modeling are essential methods that provide 
information for the evaluation of the effects of climate change 
and help the stakeholders make decisions to avoid negative 
results as soon as possible. Climate and crop modeling can 
identify the areas that may be more vulnerable to climate 
change and the crops that are more likely to be affected by the 
changing environment. It also helps to identify the optimal 
cultivation practices that can be adopted to minimize the im-
pact of climate change on crops. This information can help the 
stakeholders to make informed decisions and adopt suitable 
strategies to reduce the risk of food scarcity and ensure food 
security. 

By linking biophysical and environmental models, it is 
possible to reduce the risk of climate change and adopt pos-
sible adaptation strategies to mitigate the effects of climate 
change. This approach allows researchers to understand better 
how climate change affects people and the environment and 
which adaptation strategies are most effective in mitigating 
the effects of climate change. It also helps to identify areas 
most affected by climate change and develop plans to protect 
them. A study by Vanli et al. [9] indicates that wheat yield will 
decrease by 16.3% at Islahiye and 13.0% at Nurdagi, respec-
tively, in the middle of the century. At the end of the century, 
the reductions may be as high as 16.8% and 14.4% at these 
places, respectively. This study is an example of how climate 
change impacts agricultural production and shows the urgent 
need to protect the area’s most vulnerable to climate change. 

In the absence of protective measures, the decrease in 
wheat yields could have a significant negative impact on local 
economies and global food security. In all of the climatic con-
ditions of Sirinka, the mean grain yield of chickpeas is predict-
ed to increase by about 20% and 34% in the 2030s and 2050s, 
respectively, due to climate change (rainfall, temperature, and 
CO2) under all of the conditions. This could be a positive out-
come for local economies, as the increased yields would result 
in improved products and, subsequently, higher incomes for 
farmers and other residents. Additionally, the increased profits 
could also benefit global food security, as more food would be 
available to meet the needs of a growing population.

Based on Ramraj et al. [10], it has been found that a tem-
perature change will not affect the yield of rice and ground-
nuts in Tamil Nadu. However, a rise in atmospheric CO2 con-
centration may lead to an increase in the yield of both crops 
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in the region. The findings suggest that warmer temperatures 
can increase the photosynthesis rate of rice, but the effect on 
groundnuts is not as significant. The rise in CO2 concentra-
tion, however, helps plants to utilise available water better, 
leading to an increase in the yield of both crops. 

A study conducted by Bhuvaneswari et al. [11], using a 
calibrated and validated CERES rice model, concluded that 
a 1 to 5 °C increase in temperature would result in a yield re-
duction of 4 to 56% in the current climate, depending on when 
rice is planted (1st June to 15th July). The increased CO2 con-
centrations also allow plants to close their pores less to con-
serve water. This is because they don't need to open them as 
often to get the CO2 they need for photosynthesis. This means 
more water can be used for growth and development, increas-
ing yields. A key issue relating to climate change is the devel-
opment of climate-resistant crops to feed the ever-increasing 
population of the country, and CSM CERES crop models are 
one of the best tools and approaches to assist decision sup-
port systems for identifying adaptation strategies in the region 
of Nepal. Climate-resistant crops are important as they can 
help minimize the negative impacts of climate change on food 
production. CSM CERES crop models can help identify the 
most suitable crops for a region by considering the local cli-
mate, soil conditions, and other factors. 

This can help farmers make the right decisions when se-
lecting crops that can best withstand the changing climate in 
the region. Using the DSSAT model in the south Gujarat re-
gion, Chaudhari et al. [12] assessed the effects of temperature 
and CO2 on the yield and growth of rice by analyzing the ef-
fect of temperature and CO2. Through the model, they could 
simulate rice growth in different temperatures and CO2 levels 
and then compare the results to the actual growth and yield 
data collected from the region. This allowed them to assess the 
effects of temperature and CO2 on the rice yield and growth. 
Based on the simulation results, an increase in temperature 
by 1 to 20 °C will cause a yield reduction of 3.25 to -9.47%. 
In contrast, a decrease in maximum temperature by 1 to 20 
°C will result in a yield increase of 5.93%. Higher tempera-
tures strain the photosynthetic process, which can lead to a 
decrease in yield. Additionally, with a decrease in temperature, 
the plants can make more efficient use of the available light 
energy and convert it into more energy-rich molecules, which 
can then be used for growth, increasing yield. 

Using the CERES rice model, Gupta and Mishra [13] 
analyzed the effects of climate change on rice production in 
India from the perspective of agro-ecological zones (AEZs) 
determined by the AEZs. They found significant differences 
between the AEZs in terms of the effects of climate change on 
rice production, with some AEZs experiencing a decrease in 
production while others experienced an increase. The authors 
concluded that the AEZs can be used to identify and target 
areas most vulnerable to climate change's effects. To feed the 
CERES rice model with projected climate data from eight 
global climate models, the model was fed climatic projections 
from eight global climate models. An increase in rice yield was 
recorded in all the AEZs. The authors then used the CERES 
rice model to simulate the effects of climate change on rice 
yield in the different AEZs. They found that the simulations 

showed an increase in rice yield in all the AEZs compared to 
the current climate. 

This suggests that targeting these areas with adaptation 
strategies can help mitigate climate change's effects on rice 
production. A wide range of applications can be derived from 
modeling approaches, such as evaluating optimum cultural 
practices, seed rates, scheduling (time and amount) of irri-
gation and fertilizer applications, and evaluating the impact 
of adverse weather conditions. By using such models, farmers 
can make decisions tailored to their specific conditions and be 
better prepared for the effects of extreme weather events. It 
also allows for more efficient use of fertilizers and irrigation, 
helping to reduce environmental impacts. This research tool is 
designed to be user-friendly for evaluating the effects of cli-
mate change and different agronomic practices on agriculture. 
According to Sun et al. [14] in 2020, a new heat stress function 
was added to the CERES rice model. This new function allows 
researchers to simulate the effects of heat stress on rice pro-
ductivity by considering the effects of temperature, humidity, 
solar radiation, and other environmental factors. It also allows 
researchers to optimize the timing and amount of fertilizer 
applications, water, and other resources based on the expected 
climate conditions. 

Sun et al. [14] implemented a new heat stress function 
within the CERES rice model as part of their work. In ad-
dition to optimizing fertilizer, water, and other resource ap-
plications, this new heat stress function also allows research-
ers to develop strategies to minimize the negative impacts of 
extreme temperatures on rice production. This is especially 
important in areas with high temperatures, where rice pro-
duction can be severely affected. As a result of the improved 
crop model, rice yields in response to extreme heat were better 
predicted than in the old model. To analyze rice's projected 
yield (2020-2099), an ensemble of five climate model data sets 
and four representative concentration pathways was employed, 
and significant yield reductions were observed due to the high 
temperatures. The analysis showed that, compared to the old 
crop model, the new model could predict rice yields more ac-
curately in response to high temperatures. This is because the 
new model took into account the effects of climate change on 
the rice crop, such as increased temperatures, increased evapo-
transpiration, and other extreme weather events

Crop Yield Prediction
It has been demonstrated that crop models are one of 

the most effective tools for predicting crop productivity un-
der different crop management and climatic conditions. These 
models are based on data collected over time, such as yields, 
soil and water conditions, and weather conditions, which helps 
them accurately predict crop productivity. In addition, they 
can simulate different management scenarios, such as different 
planting dates or fertilizer applications, to determine the best 
approach. There is no doubt that pre-harvest yield prediction 
is of paramount importance to planners and policymakers at 
every level. Using these models, agricultural experts can make 
better decisions about managing the land and optimizing the 
crop yield. 
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For example, the models can be used to determine the 
optimal planting dates and fertilizer applications for a given 
region, which can help to maximize crop productivity. Based 
on the prediction results, preparations can be made to store 
excess production. If there are indications of insufficient pro-
duction, the required amount of grains can be imported from 
elsewhere or procured from other sources. This helps minimize 
risk and ensure a consistent food supply for the population. 
It also helps to prevent losses due to market fluctuations and 
food price increases due to shortages. It would be possible to 
calculate the yield gap of present cropped lands to determine 
the extent of yield increase compared to actual yield values. 
As soon as this yield gap is assessed, realistic solutions are to 
be developed to close this gap. These solutions could include 
improved water management, better soil management, better 
quality seeds and fertilizers, and better agronomic practices. 

Additionally, modern technology such as precision farm-
ing, satellite imagery, and remote sensing can help monitor 
crop growth and yield more accurately and make better use 
of available resources. Behera and Panda [15]; Lobell and 
Gourdji [16] a crop model can be successfully used in various 
parts of our country to evaluate the yield variation that occurs 
in crops due to various climatic and management factors that 
may affect the yield of the crop. Crop models can help farm-
ers understand how their environment and management de-
cisions affect crop yields when used correctly. This information 
can help them make more informed decisions and improve 
their yields. A good example is DSSAT in conjunction with 
CERES rice. DSSAT is a crop modeling system that can sim-
ulate different crop management strategies and help farmers 
determine the best approach for their particular environment. 

CERES-Rice is a crop simulation model specifically de-
signed for rice production, which can provide farmers with 
detailed information on optimizing their crop yields. Togeth-
er, these two models provide a comprehensive picture of how 
to maximize crop yields. An example of this model type is 
the DSSAT, which has been embedded with CERES rice 
model. DSSAT is a powerful tool for farmers as it uses sim-
ulation-based approaches to help them make decisions about 
their rice production. It provides detailed information about 
different crop management strategies, such as irrigation meth-
ods, nutrient management, and pest control. It helps them de-
cide which is the most efficient and cost-effective. 

Furthermore, embedding with CERES-Rice can accu-
rately predict crop yields, allowing farmers to maximize their 
yield potential. This study Corbeels et al. [17] and Urgaya [18] 
aims to provide farmers with the best adaptation techniques 
to achieve optimum yields by simulating the interaction be-
tween various inputs and the soil to achieve optimal yields. The 
CERES-Rice simulation model was used in another study 
conducted by Pinnschmidt et al. [19] to evaluate the nitrogen 
limitations that impacted yield levels and weather patterns in 
northwest Luzon (Philippines), northeast Thailand, and the 
Mekong River delta (South Vietnam) between 1992 and 1994 
using the CERES-Rice simulation model. 

The model was used to simulate the effects of various ni-
trogen fertilization rates and weather variables on the yields 
of irrigated and rainfed lowland and upland rice production 

systems. It was also used to evaluate the impacts of climate 
change on the growth and development of rice crops. In the 
Philippines, 45% of the planned results showed a deviation 
from the observed yield compared to the weather-limited 
simulated results, and 55% of the projected results showed a 
deviation from the observed yield in Vietnam. This indicates 
that the nitrogen limitations were a major factor in yield levels 
in the region, as the weather-limited simulated results were 
more accurate than the projected results. The results also sug-
gest that nitrogen availability was a key limiting factor in the 
region and could be improved with better fertilization prac-
tices. Using crop simulation models, Timsina et al. [20] found 
that it is possible to estimate potential yield and actual yield 
by overcoming other methods of a yield gap analysis by using 
crop simulation models. The attainable yields were obtained 
from maize high-yielding research plots, where the best man-
agement practices were followed to achieve the highest possi-
ble yield. 

The calculation was highest for rice (1670 kg ha-1). In 
terms of yield gap and long-term yield analysis, the CERES 
rice model is one of the most popular applications of the mod-
el. The CERES rice model was utilized in the study to provide 
a comprehensive overview of the yield gap across the states in 
India. The model simulated different yield scenarios, consid-
ering variety, irrigation, soil, and weather factors. It was found 
that the yield gap for rice was highest compared to other crops, 
indicating that there is a great potential for improvement in 
rice production. Under continental climate conditions, simu-
lated yield will be lower with high nitrogen fertilization levels 
than in coastal areas. Grassini et al. [21] estimated the po-
tential yield of maize using simulation models, and the yield 
gap was quantified as the difference between actual yield and 
simulated potential yield and the average yield gap was found 
to be 11% of the potential yield gap. 

This suggests that the potential yield gap in continental 
climate conditions may be larger than the potential yield gap 
in coastal areas because high nitrogen fertilization levels lead 
to lower simulated yields in continental climate conditions. 
The lower potential yield in continental climate conditions 
could be because higher temperatures and drier soil condi-
tions in these areas may lead to reduced crop productivity. 
Only after quantification of the yield gap can new policies be 
formulated, and a research plan can be prioritized to achieve 
food security without degrading natural resources. This model 
can quantify/analyze the yield gap by using daily weather data 
and capturing management practices that can influence yield 
(including sowing date, plant density, cultivar maturity, etc.). 
These are the key elements of the model for the quantification/
analysis of the yield gap. 

Based on simulation studies performed by Shakoor et al. 
[22] it can be predicted that a long-term increase in rainfall 
and temperature will negatively influence crop production 
in the future. This is because the higher temperatures and 
increased rainfall will cause more crop diseases and pests to 
thrive in the region, reducing crop yields. Additionally, higher 
temperatures can cause crops to dry out and cease to grow, 
further reducing crop yields. According to Fischer [23] it is 
essential to quantify crop yield potential, attainable yields, and 
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the corresponding yield gap to meet the growing demands for 
food, and simulation models are one of the most influential 
tools for quantifying potential yield. Using simulation models, 
we can identify areas where crops can produce maximum yield 
and identify factors limiting crop yields, such as soil and cli-
mate. This information can then be used to develop strategies 
to improve crop yield and meet the increasing demands for 
food.

As a result of using a crop simulation model, Espe et al. 
[24] were able to estimate yield capacity and yield gap in rice 
production systems in the United States. The model simulates 
the effects of various management practices on yield and oth-
er vital crop performance indicators. The results showed that 
applying specific methods could significantly increase yields 
and narrow the gap between potential and actual yields. There 
was a wide range of potential yields in the simulation, ranging 
from 11.5 to 14.5 and real yields, which were obtained from 
the field, varied between 7.4, 9.6, or 58 to 76% of potential 
yields. The simulation results suggested that certain practic-
es could significantly increase the actual yields. The difference 
between potential and actual yields was due to various factors, 
including soil fertility, pest and disease management, water 
availability, and other environmental conditions. This quanti-
fies the yield gap based on the assumption that farmers could 
exploit up to 85% of their yield potential, ranging between 1.1 
and 3.5 mg ha−1. 

These factors can all be managed to increase actual yields, 
but they require careful monitoring and management. By ap-
plying the practices suggested by the simulation, farmers could 
increase their yields and close the yield gap, leading to in-
creased food security and economic stability. Efforts to achieve 
the best management practices are not accounted for by the 
yield attainable. Additionally, using the best management 
practices, farmers can improve soil health and water manage-
ment, reduce pesticide use, and increase fertilizer efficiency, 
leading to a more sustainable production system and greater 
long-term yields [25]. These efforts are essential for achieving 
the increased yields needed to close the yield gap and improve 
food security. During the ripening phase of the rice crop, due 
to the dry weather conditions along with a reduction in the 
number of rainy days, the rice crop will be able to develop 
correctly and dry appropriately due to the reduced number of 
rainy days. This helps to reduce the chances of fungal diseases 
and pest attacks, which can further reduce yields. 

Additionally, the increased temperatures during the rip-
ening phase of the rice crop will help to increase the photosyn-
thesis process, thus improving the growth and development of 
the crop, leading to higher yields. As a result of higher rainfall, 
the lodging of crops occurs along with the decaying of grains 
in standing water, resulting in lower yields. Higher tempera-
tures during the rice crop's ripening phase can help increase 
photosynthesis, resulting in more efficient growth and devel-
opment and higher yields. However, increased rainfall can lead 
to lodging, which is when the rice stalks bend and fall over, and 
the decaying of grains in standing water, both of which can re-
duce yields. Additionally, increased moisture can increase the 
chances of fungal diseases and pest attacks, lowering yields.

Based on field data collected from 11 agrometeorological 
experimental stations in China during the period 1981-2009, 
Zhang et al. [26] investigated yield gap, changes in potential 
yields, water and nitrogen stressed yield on rice using CERES 
rice model based on observations from 11 agrometeorological 
experimental stations in China from 1981 through 2009. The 
authors used the CERES rice model to observe the effects of 
water and nitrogen availability on yield potential. They found 
that potential yields could be increased by increasing water 
and nitrogen inputs. They also found that the yield gap be-
tween potential and actual yields was due to the inefficient use 
of water and nitrogen. 

The CERES rice model was used to calculate the yield 
gap, which is the difference between actual yields and poten-
tial yields, as well as the changes in potential yields and wa-
ter and nitrogen-stressed yields. The field data allowed them 
to accurately measure the effects of water and nitrogen stress 
on yields. They wanted to understand the impact of climate 
change on rice production in China and how it affects poten-
tial yields and water and nitrogen-stressed yields. They used 
the CERES rice model to analyze the data and found that 
there had been a significant decrease in potential yields over 
the study period. As a result of the experiments, it was found 
that a yield reduction of 16% was observed as compared to 
the potential yield. This reduction was attributed to water and 
nitrogen stresses caused by a combination of factors, includ-
ing reduced precipitation, inadequate irrigation, and increased 
evapotranspiration due to higher temperatures.

Interestingly, Halder et al. [27] summarized that tempera-
ture and CO2 are two of the most essential weather parameters 
directly affecting crop yield. They found that temperature and 
CO2 directly influence photosynthesis and respiration, which 
affects crop yield. Additionally, they found that tempera-
ture and CO2 could also affect the growth and development 
of crops, impacting their work. As a result of the increase in 
temperature, crop yield was reduced due to pollen sterility and 
poor pollen growth during the reproductive growth stage. This 
was a consequence of the temperature increase. In addition, 
high levels of CO2 can increase the rate of photosynthesis in 
some plants. However, more than this increase is needed to 
offset the adverse effects of increased temperatures. 

Furthermore, high CO2 concentrations can also reduce 
plant water availability, leading to further reductions in crop 
yield. The rice grain yield increased steadily at CO2 concentra-
tions of 420, 530, and 650 ppm, but the total biomass yield de-
creased. Using the convolutional neural network (CNN) and 
the spatial structures of different attributes, we could model 
yield response to nutrient and seed rate management by cap-
turing and combining relevant spatial arrangements of other 
features. The increased temperature caused a decrease in the 
total biomass yield because the plants could not photosyn-
thesize as efficiently in the hotter climate. The CNN model 
was used to predict how the work would respond to different 
nutrient and seed rate management practices by capturing the 
spatial structures of other attributes and combining them.

With the right combination of technology and crop man-
agement practices, it is possible to overcome the yield gap and 
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improve rice production very rewardingly. By using new tech-
nologies such as precision agriculture and advanced irrigation 
systems, farmers can reduce their reliance on traditional prac-
tices and increase their yields. Additionally, crop management 
practices such as crop rotation and soil conservation can help 
improve yields. This is done by utilizing available technolo-
gies and adopting appropriate crop management practices. 
Precision agriculture and advanced irrigation systems allow 
farmers to monitor and manage soil and water resources more 
efficiently and reduce reliance on traditional practices. Crop 
rotation and soil conservation practices help increase nutrient 
availability and improve soil health, increasing crop yields. A 
simulation analysis was carried out over a long period to eval-
uate the sensitivity of potential yields to changes in selected 
management practices as a result of a simulation analysis per-
formed over a long period. 

The simulation analysis found that crop rotation and soil 
conservation practices increased yields significantly. The anal-
ysis also revealed that yields were more sensitive to changes in 
management practices when the practices were applied over 
a long period, such as when crop rotation was applied over 
multiple years. The simulation analysis showed that the use of 
crop rotation and soil conservation practices led to an increase 
in the availability of nutrients in the soil, which positively af-
fected soil health. This, in turn, increased yields, as crops could 
better absorb the nutrients they needed. The potential yields 
could be enhanced by adopting a higher plant density and a 
hybrid capable of growing longer. The study's findings indicate 
that crop rotation and conservation practices can improve soil 
health, leading to higher yields. This is because the increased 
availability of nutrients in the soil allows crops to absorb them 
better and maximize their growth potential. 

The authors also suggest that increasing the plant density 
and using a hybrid that can grow longer can further enhance 
yields. It has been shown that Singh et al. [28] conducted 
an empirical study in which they found that late sowing and 
transplanting, high seed prices, inability to obtain fertilizer at 
the right time, a lack of funds among farmers, and pest and 
disease infestations are among the most significant constraints 
that contribute to yield gaps. Increasing the plant density and 
using a hybrid that can grow longer can help reduce some of 
these constraints, resulting in higher yields. Furthermore, these 
strategies can help reduce the costs associated with sowing and 
transplanting and seed and fertilizer costs. By increasing the 
plant density, more plants can fit into the same area, leading 
to increased yields and more efficient use of resources. Using 
a hybrid that can grow longer can also help reduce the time it 
takes to reach harvestable yields, thereby reducing production 
costs. 

As a result, quality inputs could be provided to farmers 
at the right time to reduce this gap. The same amount of land 
can produce more crops by reducing the space between plants 
and providing a hybrid that can grow longer. This will also 
reduce the resources needed to maintain the crops, such as 
less water, fertilizer, and labor. Farmers can maximize their 
yields and reduce the gap between potential and actual yields 
by providing quality inputs at the right time. Singh et al. [28] 
utilized the CERES model to analyze the yield gap in South 

and North-West Bihar, which revealed that low yields were 
observed both during late sowing and early sowing as com-
pared to the optimal planting date of July 15 in the north and 
south-west planes of the state. This result is important because 
it demonstrates that the yield gap can be closed by providing 
farmers with quality inputs and guidance regarding optimal 
planting times. 

Additionally, the CERES model used in the study was 
able to accurately assess the yield gap in the two regions and 
make recommendations to reduce it. According to Debnath et 
al. [29] using field experimental data and DSSAT simulated 
rice yield, the authors analyzed the crop management condi-
tions that primarily contribute to the yield gap. They conclud-
ed that fertilizer application and soil fertility management are 
the two major factors driving the rice production yield gap. 
The authors also found that improved crop varieties signifi-
cantly impacted yield. In rain-fed conditions, an attainable 
yield gap of 0.33 t ha-1 was attributed to rice transplantation 
after 30th July. In contrast, an attainable yield gap of 0.86 t ha-1 
was attributable to supplementary irrigation in irrigated con-
ditions due to rice transplantation after 30th July. This means 
that by using improved crop varieties and irrigating the land, 
farmers could increase the yield by 0.33 t ha-1 in rain-fed con-
ditions and by 0.86 t ha-1 in irrigated conditions. 

This is because improved crop varieties are more resistant 
to drought and pests, and additional water helps to ensure a 
more consistent yield. The average yield of corn is reduced 
by 0.29 t ha-1 due to poor agronomic practices on the part of 
farmers. Improved crop varieties are bred to be more resistant 
to drought and pests and more efficiently utilize water. Irri-
gation ensures that the soil is kept moist and provides a con-
sistent supply of water, which is beneficial for the crops. Poor 
agronomic practices, such as inadequate fertilization and pest 
management, can reduce the potential yield of a crop, even 
with improved varieties and irrigation. A study conducted by 
the authors of this paper also concluded that there should be 
a greater emphasis placed on the amount of nitrogen fertilizer 
applied, the timing of fertilizer applications, and the timing of 
supplementary irrigation in addition to the transplanting date. 

This is because inadequate fertilization can limit the avail-
ability of nutrients necessary for healthy crop growth, and pest 
management can prevent the spread of diseases, which could 
significantly reduce yields. Furthermore, the timing of fertil-
izer applications and supplementary irrigation is important, 
as these can optimize the growth and yield of a crop. Using 
the DSSAT simulation model, Jain et al. [30] evaluated rice 
yield and yield attributes according to the gap under different 
agro-climatic zones of Chhattisgarh, and under both irrigated 
and rainfed conditions, and under both irrigated and rainfed 
conditions under different agro-climatic zones of the state. 
Their results showed significant differences in the rice yield, 
yield attributes, and gap between irrigated and rainfed con-
ditions. They also found that the gap between irrigated and 
rainfed conditions was higher in the state's drier agro-climatic 
zones than in the wetter ones. He claimed that the yield gap 
between fertilizer stress and the absence of fertilizer stress was 
the greatest in all three agroclimatic zones, both under irrigat-
ed and rainfed conditions. 
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This suggests that even though water availability is im-
portant in crop production, fertilizer plays an equally import-
ant role, especially in drier conditions. Fertilizers can help 
compensate for the lack of water and increase crop yields in 
these areas. As a result, the variety Karma Mahsuri produced 
the highest yield at Raipur, Ambikapur, and Jagdalpur, respec-
tively, with 7.5, 9.7, and 9.4 t ha-1 under irrigation. This is be-
cause fertilizer helps plants absorb more nutrients, enabling 
them to grow faster and with less water. Additionally, fertilizer 
can help reduce soil erosion, a problem in areas with low water 
availability. When combined with the right irrigation system, 
fertilizer can help compensate for the lack of water and in-
crease crop yields. In Raipur, Ambikapur, and Jagdalpur, the 
yield gap for Karma Mahsuri was 4.5, 4.7, and 4.6 t ha-1 under 
rain-fed conditions, respectively. Fertilizer helps to improve 
the soil's ability to hold water, which helps reduce the amount 
of water lost through runoff and evaporation. Fertilizer also 
helps stimulate the growth of beneficial microorganisms in the 
soil, which can help improve the soil's fertility and ability to 
support crops. 

A study by Zhang et al. [31] found that rice yield could 
be improved significantly by 29.2 to 68.9% with cultivars with 
longer growth durations and greater spikelet numbers when 
early transplanting was combined with longer growth dura-
tions. The beneficial microorganisms in the soil help to break 
down organic matter and release nutrients, such as nitrogen, 
phosphorus, and potassium, into the soil. These nutrients are 
necessary for healthy plant growth and help increase crop 
yields, as evidenced by the study by Zhang et al. [31]. A sci-
entific study by Lobell and Burke [5] suggests that the CE-
RES rice model can be used in a decision support system to 
improve rice yield in Bihar by using a decision support system. 
Initially, the study revealed that due to water stress during the 
vegetative, reproductive, and maturity phases, yield would be 
reduced to 24, 43, and 33%. In contrast, residue incorporation 
of 2.5 tons ha-1 would improve yield by 21.94%. 

The study showed that the CERES model could accurate-
ly simulate the rice crop's growth, development, and yield. It 
was found that the model could accurately estimate the yield 
potential, which farmers can use to decide how to manage 
their crops best. Additionally, the model could accurately sim-
ulate the impact of water stress on rice yields. Harithalekshmi 
[32] used the CERES rice model to calculate three levels of 
yield gaps for two rice varieties, Jaya, and Jyothi, to estimate 
the yield gap. The simulation results indicated that the yield 
gap was higher in the reproductive and maturity phases com-
pared to the vegetative phase. This was attributed to the high 
water stress experienced in those phases due to higher water 
requirements. Furthermore, it was found that incorporating 
crop residues improved both varieties' yields. As a result, the 
total yield gap calculated for the varieties Jaya and Jyothi was 
3457 kg ha-1 and 3357 kg ha-1, respectively. 

The CERES model was used to simulate the yield of the 
two varieties, Jaya and Jyothi, under different levels of man-
agement intensity. The yield gap was then estimated by com-
paring the simulated yields to the potential yields that could 
be achieved with optimal management. The results showed a 
significant yield gap for both varieties, indicating the potential 

to increase yield with improved management. To reduce this 
yield gap, the study also examined better fertilizer manage-
ment strategies to reduce nitrogen fertilizer use. The CERES 
model calculated the yield gap, which is the difference between 
the potential and actual yields, based on the two varieties. By 
reducing the amount of nitrogen fertilizer used, the total yield 
gap decreased, and the study saw an increase in the yield of 
both varieties. 

Nutrient Management Strategies
For crop production to be improved, proper management 

of fertilizers is crucial. Fertilizers are essential for increasing 
the nutrient content of the soil, which can help boost crop 
yields. They can significantly impact crop production when 
used in the right amounts and at the right time. To identify 
the potential impact of various nutrient management strate-
gies on crop growth under different pedoclimatic and man-
agement conditions, it is necessary to integrate the effects 
of soil-crop interaction on crop growth. Fertilizers can add 
essential nutrients to the soil, such as nitrogen, phosphorus, 
and potassium that are important for crop growth. They can 
also help to improve soil structure and water-holding capacity, 
which can help with water absorption and nutrient retention. 
Additionally, fertilizers can help to increase soil microbial ac-
tivity, which can help to break down organic matter, improve 
nutrient cycling, and make nutrients more available to plants. 

As a result of the SALUS model, Basso et al. [33] simulat-
ed the environmental and economic impacts of nitrogen appli-
cation methods. The simulation showed that using fertilizer to 
supplement nitrogen application could result in higher yields, 
lower costs, and less environmental impact than traditional 
methods. Furthermore, using fertilizer could help reduce the 
amount of nitrogen lost to the environment, meaning less im-
pact on water quality and lower emissions of greenhouse gases. 
Five nitrogen application rates were run in the model: 50 kg 
ha-1, 100 kg ha-1, 150 kg ha-1, 200 kg ha-1, and 250 kg ha-1, with 
the final dose level being the one the farmer chose. Increasing 
the amount of fertilizer applied to the soil makes more nitro-
gen available to the crop, meaning less is lost to the environ-
ment. Additionally, with higher fertilizer doses, the crop yield 
increases, which leads to potential economic benefits for the 
farmer. Long-term simulations for 25 years were performed 
on high-yielding and low-yielding zones. 

The simulations showed that the high-yielding zone had 
an overall positive benefit, with a higher crop yield and a lower 
rate of nitrogen leaching into the environment. The low-yield-
ing zone, however, experienced a negative effect, with a lower 
crop yield and a higher rate of nitrogen leaching into the envi-
ronment. This indicates that while fertilizer can be a beneficial 
tool for increasing crop yield and reducing nitrogen leaching, 
it is important to consider the yield potential of the particular 
zone before applying fertilizer. Based on a target yield set for 
each plot in the field, Sharma et al. [34] developed a web-based 
decision support tool, i.e., nutrient manager for rice (NMR), 
that calculates fertilizer nitrogen, phosphorus, and potassium 
rates for individual fields based on the yield target set for each 
plot. The tool considers soil type, crop stage, nutrient uptake, 
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and availability factors to achieve the desired yield target. The 
tool then generates the optimal fertilizer rates for each plot, 
ensuring the highest yield possible with the least fertilizer. 

To provide farmers with a blanket fertilization recommen-
dation (BFR), the probability of financial loss was found to be 
31%, whereas, under a natural fertilization recommendation 
(NMR), the probability was reduced to 18%. This is because 
the tool considers the soil, crop, and weather conditions, so the 
optimal fertilizer rate is calculated based on those factors. The 
BFR is just a blanket recommendation without considering 
any other factors, which can lead to over-fertilization and an 
increased risk of financial loss. On the other hand, the NMR 
considers all of those factors, leading to a more accurate rec-
ommendation and a lower risk of financial loss. Based on the 
simulation results, it has been found that it is possible to reduce 
the nitrogen fertilizer rate without affecting the yield and net 
return. The BFR is a general recommendation not tailored to 
individual circumstances, whereas the NMR considers more 
specific factors such as soil type, climate, and crop type. 

This allows for a more accurate recommendation that re-
duces the risk of over-fertilization and financial loss. The sim-
ulation results have demonstrated that this approach can sig-
nificantly reduce the nitrogen fertilizer rate while maintaining 
a high yield and net return. A study by Hameed et al. [35] 
simulated the rice yield under different nitrogen fertilizer rates 
and with different nitrogen splits using the ORYZA model to 
compare the results. The simulation results showed that using 
the proposed fertilizer recommendation reduced the total ni-
trogen fertilizer rate by 50% while maintaining a yield of up 
to 4 t ha-1. Furthermore, the net return for the farms using the 
recommended rate was greater than that for farms that used 
the traditional rate. This indicates that the proposed approach 
can help farmers save money while getting the most out of 
their crops. 

During the study, he found that the yield increased lin-
early with the addition of nitrogen, but there was no yield 
increase after applying 300 kg nitrogen ha-1 of nitrogen. The 
study's results suggest that applying a higher rate of nitrogen 
than the traditional rate does not produce significant yield in-
creases, but it does lead to increased costs. Therefore, the rec-
ommended rate of nitrogen is not only the most cost-effective, 
but it also provides the maximum net return for farmers. As 
well as this, he also mentioned that nitrogen use efficiency was 
higher at zero nitrogen input. It tends to decrease with an in-
crease in the rate of nitrogen input. The study also showed no 
significant differences in the grain quality when nitrogen was 
applied at the traditional rate versus the higher rate. This indi-
cates that the traditional rate of nitrogen input is sufficient to 
achieve the desired yield. 

Moreover, the study's results suggest that the traditional 
rate of nitrogen input is the most cost-effective and provides 
the maximum net return for farmers. Furthermore, the model 
also simulated that the lowest yield would occur with a sin-
gle-split nitrogen application, and the highest yield would oc-
cur with a four-split nitrogen application. This indicates that 
farmers should use the traditional rate of nitrogen input to 
ensure they are getting the most out of their investments. The 
study also showed that the yield increases with multiple appli-

cations of nitrogen, increasing the farmer's net return.

The CERES rice model evaluated different nitrogen man-
agement strategies to reduce the yield gap. The CERES rice 
model was used to simulate the effects of different nitrogen 
management strategies on rice yields. The model could accu-
rately predict changes in yield when different strategies were 
applied, allowing farmers to optimize their nitrogen manage-
ment practices and reduce the yield gap. The study aimed to 
compare different nitrogen doses with three different methods 
of application (broadcasting, fertigation, and urea super gran-
ules). The CERES model was able to accurately simulate how 
different nitrogen doses and application methods affected the 
rice plants' growth and crop yield. The study results showed 
that using the right combination of nitrogen doses and appli-
cation methods allowed farmers to reduce the yield gap and 
increase their overall productivity. According to the simulation 
results, 130 kg ha-1 nitrogen was applied in three split doses, 
and the fertigation method effectively improved yield when 
used in three split doses [32]. 

This strategy was the most effective in achieving higher 
yields because it allowed the nitrogen to be more evenly dis-
tributed throughout the soil. Splitting the nitrogen into three 
doses with the fertigation method also allowed for better ab-
sorption by the rice plants and improved the nitrogen uptake 
efficiency. In crops, it is predicted that nutrient management 
based on field trials and crop modeling will help to improve 
nutrient efficiency based on site-specific nutrient manage-
ment. By splitting the nitrogen into three doses, each dose was 
more concentrated and had a greater chance of being absorbed 
by the plants, thus improving the nitrogen uptake efficiency. 
Additionally, by tailoring nutrient management to site-specific 
conditions, the crops can better access the nutrients they need, 
improving nutrient efficiency. This is because such an approach 
enables farmers to accurately measure and adjust the amount 
of nitrogen applied to the soil, providing the optimal environ-
ment for the crop to grow. 

By using this approach, farmers can ensure that the right 
amount of nutrients is being supplied to the crop while also 
preventing the over-application of nitrogen that could lead to 
soil degradation and ground water contamination. Further-
more, it helps farmers save on costs by reducing the fertilizer 
they need. Furthermore, it can potentially reduce the amount 
of nitrogen runoff in nearby water sources, which can help re-
duce environmental pollution. This is because nitrogen can be 
more precisely controlled and applied in the exact amounts 
needed for the crop. This reduces the potential for over-appli-
cation of nitrogen, which can result in the nitrogen leaching 
into nearby water sources and polluting the environment. To 
guide field management in the future, it is essential to have a 
clear understanding of the impacts of water use and nutrient 
application on agroecosystem services.

Chen et al. [36] used the De nitrification - Decomposi-
tion (DNDC) model to simulate the biogeochemical process 
for rice production in China based on the DNDC model. The 
results of this study suggest that 0.88 + 0.33 Tg of synthetic ni-
trogen could be reduced per year (mean + standard deviation) 
without affecting the rice yields. The DNDC model simulated 
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the soil-plant-atmosphere system's nitrogen, phosphorus, and 
carbon cycles and incorporated photosynthesis, respiration, 
nitrification, and denitrification processes. This enabled them 
to quantify the potential benefits of reducing synthetic nitro-
gen inputs and how it could improve water quality and benefit 
the environment. The use of shallow flooding, as well as opti-
mal application of nitrogen at the field level, could enhance 
ecosystem services at a national scale, leading to a reduction 
of 34.3% in greenhouse gas emissions, a reduction of 2.8% in 
overall nitrogen loss, and an increase in 1.7% in rice yields 
compared to current management practices. 

As a result of this simulation study, we can analyze the 
potential benefits of water and fertilizer management reforms. 
The results indicate that implementing better water and nu-
trient management practices can reduce greenhouse gas emis-
sions, reduce nitrogen loss, and increase rice yields. This could 
be beneficial to the environment and agricultural productivity. 
There was an evaluation conducted in North Western India 
of the performance of the DNDC model along with RothC 
(Rothamsted Carbon model) in simulating soil organic carbon 
(SOC) storage under rice-wheat cropping systems, maize-
wheat cropping systems, and cotton-wheat cropping systems. 
The results showed that the DNDC model was more accurate 
in simulating the SOC storage under different cropping sys-
tems, and the model could accurately predict the SOC stor-
age in the surface soil layer. This is because the DNDC model 
considers crop residues, soil organic matter decomposition and 
several other important factors for predicting SOC storage. 

By considering these factors, the DNDC model can pro-
vide a more accurate prediction of SOC storage. This indicates 
that the DNDC model could be useful for assessing agricul-
tural management practices' environmental impacts and im-
proving agricultural productivity. Additionally, the DNDC 
model can simulate the effects of different agricultural man-
agement practices on SOC storage. This could be used to 
identify the most optimal practices to maximize SOC storage 
and minimize the environmental impacts of agricultural man-
agement practices. By understanding how different practices 
affect SOC storage, farmers and policymakers can make more 
informed decisions about managing their land in economi-
cally and environmentally beneficial ways. Furthermore, the 
DNDC model can simulate the effects of different practices 
over long periods, which can help to identify the long-term 
effects of various agricultural management practices. As such, 
the DNDC model could be a valuable tool for farmers and 
policymakers in informing decision-making and ensuring sus-
tainable agricultural management practices. 

By providing simulations of the long-term effects of dif-
ferent agricultural practices, the DNDC model can help farm-
ers and policymakers better understand the impacts of their 
decisions on the environment and help them make informed 
decisions that will ensure the sustainability of their operations. 
There are indications that the R2 values for the different crop-
ping systems of DNDC are 0.935 and 0.895, respectively, for 
rice-wheat and maize-wheat cropping systems. DNDC can 
accurately predict soil organic carbon changes, soil water con-
tent and nitrogen losses and can, therefore, be used to assess 
and adjust agricultural management practices to optimize crop 

yields and reduce environmental impacts. The high R2 values 
show the model can accurately predict soil organic carbon and 
nitrogen level changes based on the different cropping sys-
tems. The R2 values for rice-wheat and maize-wheat crops (R2 
= 0.920 and 0.967, respectively) showed excellent agreement 
with the simulated and measured soil organic carbon contents 
for both crops. The high R2 values indicate that the DNDC 
model can accurately simulate soil organic carbon content 
changes for rice-wheat and maize-wheat cropping systems 
over time. This shows that the model can predict how different 
cropping systems affect soil organic carbon levels and inform 
sustainable land management practices.

It is essential to understand that soil texture is one of the 
most critical soil factors that directly influence crop productiv-
ity by interacting directly with processes such as retention of 
water, ion exchange, and nutrient recycling. A calibrated and 
validated agricultural model (DSSAT-CERES-Wheat mod-
el) has been used with 30 years of historical data to evaluate 
the long-term effects of soil temperature on wheat productivi-
ty under rain-fed conditions. The soil texture affects the struc-
ture of the soil, which in turn influences the water-holding 
capacity and the soil's ability to support crop growth. Addi-
tionally, soil texture involves the exchange of ions and nutrient 
recycling, which is essential for sustainable crop production. A 
DSSAT-CERES-Wheat model is a powerful tool for evalu-
ating the effects of soil temperature on crop productivity over 
the long term, and it is based on 30 years of historical data. 

The results of He et al. [37] showed that wheat grown in 
clay soil is much more tolerant to drought than wheat grown 
in silt loam soil. This means that soil temperature is an essen-
tial factor in determining wheat productivity, as it affects the 
sensitivity of wheat to drought. Since clay soils are more tol-
erant to drought, they are better suited for wheat production 
than silt loam soils, and by using the CERES rice model for 
rice growth and development in the state of Gujarat, India. 
Mote and Kumar [38] examined the effects of different lev-
els of nitrogen on rice growth and development. He et al.'s 
[37] research showed that clay soil was better able to retain 
moisture during drought conditions, leading to higher lev-
els of drought tolerance for the wheat grown in it. Mote and 
Kumar's [38] research showed that different nitrogen levels 
significantly affected the rice's growth and development, with 
higher nitrogen levels resulting in increased yields.

Phenological Studies
The term "crop phenology" describes the timing of plant 

development, which is a significant determinant of plant yield 
as it results from the surrounding environment. It is impact-
ed by environmental factors such as temperature, water avail-
ability, and the length of the growing season, as well as hu-
man-induced changes such as land use, land cover, and climate 
change. Crop phenology helps to determine when to plant, 
when to fertilize, and when to harvest for optimal yield. Much 
importance is attached to studying crop phenology and how it 
relates to surrounding environmental factors. By understand-
ing how ecological factors influence crop phenology, farmers 
and researchers can better predict when crops will be ready 
for harvest and when they should plant, fertilize, and irrigate 
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them. This knowledge can help to increase crop yields, reduce 
waste and maximize profits. 

As a result, crop models can play a significant role in this 
process, as they are an efficient tool for achieving this goal. 
Crop models can simulate the effects of environmental factors 
on crop growth, such as temperature, rainfall, and sunlight, 
and provide farmers and researchers with an accurate forecast 
of when the crop will be ready for harvest. This information 
can be used to determine the best time to plant, fertilize, and 
irrigate crops and can be used to optimize crop yields, reduce 
waste, and maximize profits. According to IPCC, the project-
ed atmospheric CO2 content and temperature will be 414, 522 
and 622 ppm, and 1.3, 2.9, and 5.2 °C retrospectively. Tem-
perature increases adversely affect crop performance, and ele-
vated CO2 concentrations cannot adequately compensate for 
these adverse effects. Under this condition, wheat days taken 
to attain anthesis decreased as temperature increased at all lev-
els (1.3 in the 2020s, 2.9 in 2050s and 5.2 °C in the 2080s) 
in 2020s, 2.9 in 2050s and 5.2 °C in 2080s) [39]. This means 
that the current climate trend has the potential to cause sig-
nificant yield losses in many of the world's main crop species 
and that elevated CO2 concentrations are unlikely to improve 
the situation.

To determine the extent of crop loss associated with water 
stress, it is essential to know at what stage the focus has oc-
curred. If the water stress has happened earlier in the growing 
season, the crop yield will be significantly reduced due to lack 
of water during the critical stages of development. If the water 
stress occurs later in the growing season, the crop yield may 
be affected less since the plant has already gone through its 
critical stages of growth. Due to water stress, the crop yield 
was reduced by over 35% and 50% during the vegetative and 
reproductive stages. During the vegetative and reproductive 
stages, plants are most vulnerable to water stress and can suffer 
from a lack of water. As a result, the plants cannot access the 
necessary resources for growth, leading to decreased crop yield. 

A spatial simulation of crop water stress was conducted 
for rain-fed sorghum crops using the DSSAT-CERES mod-
el. Simulated crop water stress was found to be affecting crop 
yield. Using this model [40], we could simulate the crop water 
stress experienced during different sowing dates and pheno-
logical stages of the crop's life cycle. The simulation showed 
that crop water stress was more severe when the harvest was 
sown late and during the reproductive phenological stages. 
This resulted in a decline in crop yield. This suggests that the 
timing of sowing is critical to ensure optimal crop yield and 
reduce the impacts of crop water stress. This model enabled 
the researchers to quantify the effect of crop water stress on 
crop yield in different sowing dates and phenological stages. 
It also gave them insight into how the timing of sowing and 
other management practices can be used to reduce crop water 
stress and improve crop yields.

Forewarning of Disease and Pest
Only in India alone, 35% of field crops are lost to patho-

gens and pests, resulting in losses for farmers [41]. This is due 
to the lack of access to modern pest control methods, such 

as chemical pesticides and biological pest control, which are 
often too expensive for small-scale farmers. Additionally, the 
lack of knowledge of proper farming methods and agricultural 
practices contributes to the loss of crops. Because of disease 
and pest forewarning, control measures can be applied effec-
tively, and yield predictions and market potential can be de-
termined. This helps to ensure that the crops are healthy and 
can be sold at a good price, leading to higher profits for the 
farmers. Furthermore, access to modern pest control methods 
can help to reduce the risk of crops being destroyed by pests 
and diseases, which can be a major source of loss for farmers. It 
is a method of predicting the probability of disease occurrence 
by combining weather data with biological data. 

By using predictive analytics, farmers can anticipate when 
and where to apply pest and disease control methods, which 
can significantly reduce the losses they experience due to pests 
and diseases. Furthermore, using modern pest control meth-
ods can help reduce the use of chemicals, which is beneficial 
for the environment. If we can detect diseases early, we can 
adapt crop management strategies promptly. Farmers can gain 
insight into the weather conditions and soil moisture favorable 
for pest and disease activity by using predictive analytics. This 
helps them to plan ahead of time and take preventive action 
to prevent losses. Additionally, modern pest control methods 
are more targeted and use fewer chemicals, which minimizes 
the environmental impact of these interventions. Finally, by 
detecting diseases early, farmers can adjust their crop manage-
ment strategies to reduce the spread of the disease and limit 
the losses. There has been tremendous growth in disease and 
pest forecasting tools in recent years due to the increasing fre-
quency of unpredictable weather conditions. 

These tools use data from remote sensing, weather sta-
tions, and other sources to predict when and where diseases 
and pests are likely to occur. This allows farmers to make in-
formed decisions about when to apply pest control treatments 
and how to manage their crops to avoid spreading disease. For 
this purpose, both computer software and statistical equations 
were used as part of the analysis. The data is then analyzed 
using algorithms to identify patterns and trends. This allows 
the software to predict where and when pests and diseases will 
likely occur. Farmers then use this information to decide how 
best to manage their crops and when to apply pest control 
measures. Continuous monitoring of microclimatic elements 
is involved in the development of this model. 

Since the late 1960s, when single-species population dy-
namics models were developed, simulation models have been 
used in pest management to control pest populations. In the 
later stages of this study, population dynamics models were 
devised to study biotrophic interactions between pests and 
their natural enemies. It was done in the mid-80s to integrate 
crop growth simulation models with pest damage mecha-
nisms. Still, this approach was described as a one-way analysis 
of crop-pest interactions because these models accounted for 
pest effects on crop growth without considering the reverse. 
Because of the interlinking of pest population dynamics mod-
els with crop growth simulation models in the 1990s, there 
was an emergence of a two-way approach to crop-pest inter-
actions. The first computer-based simulation model for disease 
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pest forecasting was EPIDEM for the early blight of potatoes 
and tomatoes.

Gohain et al. [40] used an artificial intelligence model and 
a cloud-based collaborative platform to identify plant disease 
tracking and forecast for farmers. Plant images were collected 
over seven months, and the artificial intelligence model, the 
CNN, was trained with these huge data sets. CNN model di-
agnosed the test images, and plant pathologists validated the 
results. This novel methodology achieved over 95% disease 
identification accuracy. Some diseases show visible symptoms 
only during the critical stages; an example of such a disease is 
the false smut of rice. This disease shows symptoms only after 
the emergence of a panicle. The application of crop models 
is highly effective for forecasting these models. Such studies 
were carried out in India to forecast false smut of rice in West 
Bengal. The novel methodology accurately identified this type 
of disease because it focused on developing crop models to 
detect the symptoms early. This allowed for early detection 
and intervention, which increased the accuracy of the disease 
identification. 

The study in India successfully forecasted false smut of 
rice due to implementing these crop models. Three years of 
aerobiological data were analyzed, including pathogenic spore 
concentration over the rice canopy. The study results showed 
that the model was highly effective in forecasting the false 
smut of rice in the region. Furthermore, the model could ac-
curately differentiate between false smut and similar diseas-
es. This provides an effective way to identify the disease early 
and take preventative measures. The percentage disease index 
values were calculated using multiple regression models with 
the age of the plant, the pathogen concentration, and meteo-
rological factors being incorporated into the models. The de-
pendence of disease severity on weather variables varied over 
different seasons. In the dry season, the false smut severity 
depends on the age of the plants as well as pathogenic spore 
concentration. On the other hand, in the wet season, the false 
smut severity depends on the age of the plants, pathogenic 

spore concentration and temperature. 

This indicates that temperature is a more important fac-
tor in determining false smut severity during the wet season 
than in the dry season. In the rainy season, severity depends 
upon spore concentration, relative humidity, and minimum 
temperature. Table 1 below is a summary of the models that 
have been used to simulate the forecasting of this false smut 
in rice. In the dry season, the age of the plants and spore con-
centration are the two key variables. In contrast, the variables 
are spore concentration, relative humidity, and minimum tem-
perature in the rainy season. These variables are used to devel-
op models to forecast the false smut severity in rice accurately.

Models in pest management are not limited to forecasting 
pest populations but also to providing solutions to issues such 
as selecting strategies and state selection in pest management. 
This is because these models simulate the effects of different 
designs on the environment and the pest species in question. 
By doing so, they can help identify the most effective strategy 
for controlling pest populations and guide how to implement 
them best. Simulating pest growth and dynamics and the risk 
of pest invasion is possible. The models can also be used to 
assess the impact of climate change on pest populations and 
identify areas at risk of attack. The simulations are also used 
to help identify areas most vulnerable to changes in environ-
mental conditions and assess the risk of pest establishment 
and spread. 

An example of such a model would be FRUTFLY, which 
has successfully predicted the emergence of fruit flies in the 
past [42]. FRUTFLY is a model that uses data on climate, soil 
and other environmental factors to predict the emergence of 
fruit flies. It can also be used to assess the impact of climate 
change on pest populations, identify areas at risk of invasion 
and assess the risk of pest establishment and spread. The fol-
lowing are a few examples of some of the various pest-fore-
casting models that have been developed around the world. 
Each model assumes that the environment is critical to pest 
growth and dynamics. By combining data on climate, land 

Table 1: Models for the forecast of false smut disease of rice.

Crop season Estimate Significant cofactor R2 for the whole model Step down equation R2 for the step-down model

Rabi 1.8701 Age and Spore 0.92 PDI = 1.870 + 0.0235 x Age + 0.5813 x 
Spore 0.91

Kharif 8.0248

Spore, Minimum 
Temperature and 
Relative humidity 

(RH)

0.91 PDI = 8.0248 + 0.3588 x Spore - 0.9911 x 
Tmin-0.3561 x RH 0.89

Table 2: Different forecasting models for pests.

Forecasting models Parameters Country Insect Ref.

Ordinal logistic model Max temperature, Min temperature and RH India Whitefly, Pyrilla and Fruit fly [43]

SOPRA Air and Soil temperature Switzerland Dysaphis plantaginea and Grapholitha lobarzeweski [44] 

FLYPAST Suction trap data UK Aphis fabae [45] 

NAPPFAST Degree days and Cold temperature survival USA Scirtothrips dorsalis [46] 
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use, and other factors, these models can accurately predict the 
probability of pest invasion and the size of the population. This 
information can inform pest management strategies and help 
prevent or reduce the impact of pest invasions (Table 2).

Natural Resource Management
Developing strategic and long-term plans is critical to 

managing natural resources sustainably and strategically. This 
way, resources can benefit all stakeholders while preserving 
the environment and ecosystem. Long-term planning is nec-
essary to ensure that resources are managed in a way that is 
ecologically sound and economically viable. The effects of the 
different environmental, anthropogenic, and socioeconomic 
threats must be evaluated and quantified to formulate such 
plans. Proper planning needs to consider how resources can 
benefit all stakeholders in the short-term and long term-while 
also considering such plans' ecological, socioeconomic, and 
political implications. This will ensure that resources are man-
aged efficiently and sustainably. Some advanced tools for mak-
ing decisions, artificial intelligence, numerical environmental 
simulation models, remote sensing systems, etc., are advanced 
forms of decision support systems used for these purposes. 

These decision support systems can help identify and 
assess the environmental impacts of resource management 
decisions and advise how to implement them best. This will 
ensure that resources are managed as efficiently and sustain-
ably as possible while minimizing any negative environmental 
impacts. Compared with other methods of identifying data, 
this model has many advantages, including the ability to con-
serve resources, save time, and ease of use. This type of model 
also can provide accurate, real-time data that can be used to 
inform decision-making and help to create more efficient and 
effective processes. Moreover, it can help reduce the costs as-
sociated with traditional data collection methods and reduce 
the environmental impact of activities that require the use of 
resources. An important pre-requisite for managing coastal 
zones, particularly in areas where mangroves occupy a large 
proportion of the shoreline, is the quantification and fore-
casting of wave attenuation by mangroves. This is important 
because wave attenuation directly impacts coastal erosion and 
flooding. 

By quantifying and forecasting wave attenuation, it is 
possible to manage the coastal zone better, reducing the risk 
of erosion and flooding and ultimately reducing the environ-
mental impact. It should be noted that, even though the dy-
namic consequences of waves on mangroves are not taken into 
account in the current regional wave forecasting system, even 
though they should be [47], these effects must be taken into 
account. This is because the effects of waves on mangroves are 
complex, and if they are not taken into account, there could 
be serious consequences, such as erosion and loss of habitat. 
Furthermore, the effects can be unpredictable and could lead 
to unexpected economic and environmental losses. A model 
called MODFLOW 2000 was used to simulate the ground-
water level for present and future climates (2019 to 2023) in 
the Midnapur district of West Bengal, India. 

This model uses a combination of surface topography and 
hydrologic properties to predict the groundwater level in a 
region accurately. It considers precipitation, evaporation, and 
runoff to make an accurate prediction. There is no doubt that 
this study sheds light on the future state of groundwater and 
the necessity for adopting groundwater management strate-
gies as soon as possible [48]. Additionally, the model was test-
ed with historical data, and the results showed a high degree 
of accuracy, indicating that it could be a dependable tool for 
accurately predicting future groundwater levels in the area. 
This is especially important in areas where groundwater de-
pletion is a major concern and where long-term management 
strategies need to be adopted to ensure the sustainable use of 
groundwater resources. It is a challenge for the agricultural 
sector to produce more crops with less water due to increased 
demands for water from other sectors. This means that farmers 
have to look for innovative ways to conserve water, such as us-
ing mulch, no-till farming, and efficient irrigation systems, as 
well as adopting more efficient crop varieties and water-saving 
technologies. 

This will help them to use the limited water resources 
more efficiently and sustainably [49]. It is becoming increas-
ingly difficult for the agricultural sector to produce more food 
with less water due to the increasing demand for irrigation 
water to produce more food, along with increased competi-
tion across water-using sectors. By using more efficient irriga-
tion systems and better water management practices, farmers 
can reduce the amount of water needed to produce a given 
amount of food. This can help reduce the water needed for ir-
rigation and the amount lost to evaporation, runoff, and seep-
age. The goal can only be achieved if proper strategies are used 
for water savings and more efficient water use. For example, 
farm-level water management and augmenting water use effi-
ciency can be achieved using simulation models to achieve the 
goal. Changes in farming practices, such as crop rotation and 
reduced tillage, can also help reduce water usage and improve 
water retention in the soil. Furthermore, agricultural policies 
and regulations should be implemented to ensure water re-
sources are managed sustainably.

Limitations of Crop Models
It is also essential to discuss the uncertainties associated 

with the crop models. Uncertainty is a critical factor in de-
termining crop yield, so it is necessary to thoroughly analyze 
the potential outcomes of different models. The accuracy of 
the crop model depends on how well it has been calibrated 
and validated, as we mentioned earlier [50]. To ensure that 
the model is fit for purpose, it is essential to understand the 
sources of uncertainty and take measures to reduce them. This 
includes identifying and addressing any structural uncertainty 
and conducting sensitivity analyses to determine how much a 
change in an input variable will affect the model's output [51]. 
Because field data are rarely so precise, validation is a difficult 
task. It is essential to remember that the quality of the input 
data limits the performance of a model. To better understand 
the model's performance, it is necessary to compare the model 
results to actual field data to verify the accuracy of the model. 
This process also helps identify areas where the model may not 
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correctly capture the real-world dynamics and can be used to 
identify data deficiencies that need to be addressed. 

When the processes mentioned above are performed 
with sufficient data and are repeated regularly, it is possible to 
improve the accuracy of the above mentioned processes. This 
helps ensure the model is calibrated correctly and accurately 
reflects real-world dynamics. Furthermore, continuously mon-
itoring the model's performance makes it possible to identify 
potential data deficiencies that could lead to inaccuracies. By 
correcting these deficiencies, the accuracy of the model can be 
improved [52]. CGM has had several occasions where it has 
not been able to produce accurate results because of the lack of 
understanding of the natural processes in conjunction with the 
limitations of computer power. Therefore, it is essential to con-
stantly monitor the model's results to identify potential data 
deficiencies and address them to improve the model's accuracy. 
This can include the data, available computer power, and un-
derstanding natural processes to predict and model the results 
better. It has been observed that climate models cannot project 
changes in climate variability at a local scale in most cases. 
They can also not launch changes in the frequency of extreme 
weather events locally, such as storms and droughts. 

Climate models cannot accurately capture the complex 
local interactions between land, water, and air at the regional 
scale required to predict these changes effectively. Additional-
ly, they need to consider the natural variability of weather pat-
terns locally [53]. It is essential to remember that crop models 
are not universal, and therefore, the modellers should choose 
one peculiar model based on their objective use [54]. This is 
because climate models cannot account for natural variabil-
ities, such as changes in wind direction or rainfall amounts, 
which can significantly impact crop growth. Additionally, the 
local interactions between land, water, and air that occur at 
a regional scale, such as soil moisture levels, can also affect 
crop growth, and climate models are not designed to consider 
this. To gain a deeper understanding of these problems more 
and more scientific evaluations of these problems needed to be 
conducted to gain a better understanding of these problems. 
These complex local interactions require detailed data analysis 
and field trials to understand how they affect crop yields. This 
data can then be used to fine-tune climate models and provide 
a more accurate picture of how climate change will influence 
crop yields in a given area [55].

Conclusion
It is most straightforward to formulate and evaluate 

different crop management strategies with the help of crop 
simulation models, which provide a sustainable and easy way 
to do so. To achieve this objective, various models were used, 
such as statistical, dynamic, stochastic, static, and simulation 
models. Moreover, these models help identify the most appro-
priate and prosperous agricultural sector development strat-
egies. These models can be used effectively for assessing the 
impact of climate change, formulating adaptation strategies, 
managing natural resources, predicting crop yield, and pre-
dicting pests and diseases. As a result, appropriate integration 
of these models can lead to the successful implementation of 
agricultural objectives and strategies, maximizing the positive 

impacts of climate change and ensuring sustainable use of re-
sources. 

By leveraging the effectiveness of these models, we can 
gain insights into the future and make informed decisions to 
mitigate climate change impacts, develop more sustainable 
solutions, and promote a healthier environment. Ideally, it 
would be ideal to calibrate and validate models before going 
for such an application to achieve the most accurate possi-
ble results. This can help ensure the models function correctly 
and optimize for the specific application, leading to more suc-
cessful outcomes. Despite this, some technical and practical 
limitations need to be addressed. To address such problems 
and improve the results of the models, further research needs 
to be carried out. To ensure the quality and effectiveness of 
the models, it is essential to identify and address the technical 
and practical limitations through further research and devel-
opment. Crop models are a precious tool for crop management 
studies because of their advantages in saving time, resources, 
and labor compared to other methods. These models also help 
optimize crop yield, which adds to their cost-efficiency.
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