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Abstract
The aim of this study was to assess the anti-obesity effect of Lactobacillus 

acidophilus-fermented mixture of skim milk, red ginseng extract, and immature 
fruit of Rubus coreanus Miquel (called black raspberry) extract in a mouse model 
of diet-induced obesity. Male C57BL/6J mice were fed a normal diet (ND), 
high-fat diet (HFD), high-fat diet supplemented with fermented skim milk 
(HFD-FSM), or high-fat diet supplemented with the fermented mixture (HFD-
FMIX). FSM and FMIX were orally administered (2 g/kg of body weight) on a 
daily basis. Following a 6-week regimen, the following physical and biochemical 
measures were assessed: feed intake, body weight, periepididymal fat and perirenal 
fat mass, size of the epididymal adipocytes, and plasma levels of glucose, insulin, 
adiponectin, and leptin. No significant differences were observed in all parameters 
tested in the HFD-fed and HFD-FSM-fed groups, except the plasma leptin 
level, which was higher in the HFD-FSM-fed group than in the HFD-fed group. 
In the HFD-FMIX-fed group, feed intake was similar to, but the adiponectin 
level was higher than that in the HFD-fed group. The HFD-FMIX-fed group 
showed significantly lower increase in body weight, size of epididymal adipocytes, 
and plasma levels of glucose and leptin than the HFD-fed group. These results 
demonstrate that the obesity-related measures can be decreased in obese mice by 
administration of L. acidophilus-fermented mixture of skim milk, red ginseng, and 
black raspberry fruit extract. These results also suggest that the fermented mixture 
can possibly be utilized as a functional food material with an anti-obesity effect. 

Keywords
 Fermentation, Lactobacillus acidophilus, Red ginseng, Black raspberry, Anti-

obesity

Introduction
Obesity results from energy imbalance caused by excessive intake of high-

calorie foods and lack of exercise. It is generally accompanied by metabolic 
disorders that can cause various diseases such as diabetes, cardiovascular disease, 
hypertension, hyperlipidemia, and cancers [1]. Thus, several therapeutic strategies, 
such as behavior modification, exercise, dietary remedies, medications, and 
surgery, have been developed. Since modification of one’s lifestyle helps overcome 
energy imbalance and subsequent disorders, supplementation with anti-obesity 
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functional foods has garnered attention for obesity treatment.

Red ginseng is a medicinal herb that has health 
beneficial effects including anti-obesity effects. Several groups 
reported that the anti-obesity effect is attributed to ginseng 
saponins [2-4], which are classified into protopanaxadiol 
group (ginsenosides: Ra, Rb, Rc, Rd, Rg3, Rh2, and Rs) and 
protophanxatriol group (ginsenosides: Re, Rf, Rg1, Rg2, and 
Rh1) depending on their chemical structures. Red ginseng is 
known to contain large amounts of Rg2, Rg3, Rh1, and Rh2 
ginsenosides that are effectively produced during the heating 
process. Rg3 and Rh2 ginsenosides have anti-obesity effects 
in vitro [3, 4].

Black raspberry (Rubus coreanus Miquel; called ‘Bokbunja’ 
in Korean) is traditionally used to help restore stamina [5]. 
Studies have reported that the dried immature fruit is 
commonly prescribed for various diseases in oriental medicine. 
In addition, multiple studies have demonstrated the diverse 
effects of the fruits i.e., the antioxidant effect [6], lipid 
metabolism enhancing effect [7], and weight control [8]. 

Lactic acid bacteria (LAB) are representative 
microorganisms used as probiotics owing to their essential 
benefits to intestinal health. Since various reports have 
demonstrated the correlation between intestinal health and 
obesity development, the anti-obesity effect of LAB or LAB 
supplementation as a bio-functional material is also extensively 
studied [9-12]. 

In this study, a mixture of skim milk powder, ginseng 
extract, and immature black raspberry extract was fermented by 
Lactobacillus acidophilus isolated from kimchi. The fermented 
extract was then administered to high-fat diet-induced 
obese mice. Following a 6-week regimen, various physical 
and biochemical measures, such as food intake, body weight, 
periepididymal fat and perirenal fat mass, size of epididymal 
adipocytes, and plasma levels of glucose, insulin, adiponectin, 
and leptin were assessed.

Materials and Methods
 Samples and preparation

L. acidophilus of LAB and black raspberry (dried immature 
fruit) were obtained from Imsil Research Institute of Cheese 
Science (Seongsu-myeon, Imsil-gun, Korea) and Berry and 
Biofood Research Institute (Buan-myeon, Gochang-gun, 
Korea), respectively. Nonfat dry milk and red ginseng extract 
were purchased from Seoul Dairy Cooperative (Seoul, Korea) 
and Kunbo Co., Ltd. ( Jinan-gun, Korea), respectively. Black 
raspberry (200 g) was extracted in water (6 L) for 9 h at  
100 °C, and then the extracts were freeze-dried.

Analysis of free amino acids
The sample (1 g) was extracted in 70% ethanol (50 mL) 

for 15 min at 80 °C. After duplicating the extraction, the 
extracts were filtered and ethanol was evaporated with a rotary 
vacuum evaporator. The resulting water solution was mixed 
with ether and then passed through a separating funnel to 
remove the ether layer. The extracts obtained were dried in a 
rotary evaporator. After the extract powder was solubilized in 

sample dilution buffer (10 mL), the amino acid contents were 
determined using an amino acid analyzer (Sykam S433, Sykam 
GmbH, Eresing, Germany), according to the manufacturer’s 
instructions.

Experimental animals and feed
Twenty-four C57BL/6J mice (25 g, male) were purchased 

from Damul-Science (Daejeon, Korea). After 1-week 
adaptation under a 12-h light/12-h dark cycle (temperature, 
20–24 °C; humidity, 45–55%), 8-week old mice were used in 
this study. The mice were divided into 4 groups (6 mice per 
group) using a randomized block design. For 6 weeks, each 
group was fed different diets; (1) normal diet (ND), (2) high 
fat diet (HFD), (3) HFD with fermented 10% skim milk diet 
(HFD-FSM, fermented by L. acidophilus at 37 °C for 72 h) and 
(4) HFD with fermented mixture (HFD-FMIX, fermented by 
L. acidophilus at 37 °C for 72 h) (Table 1). The mixture consisted 
of 10% w/w skim milk and 2% w/w mixture (1% w/w red 
ginseng extract and 1% w/w black raspberry extract). Before 
administration to the mice, the skim milk powder and mixture 
powder were freshly dissolved in drinking water. 

The HFD-FSM and HFD-FMIX groups were fed an 
HFD, and orally administered FSM and FMIX in water at  
2 g/kg body weight (BW) on a daily basis, respectively. The 
same volume of drinking water was orally administered to the 
mice in the ND and HFD groups. 

Amount of dietary intake and feed efficiency and body 
weight

Dietary intake of mice was regularly measured once a 

Table 1: Composition of experimental diets.
Unit: gm%

Ingredients NDa) HFDb) HFD-
FSMc)

HFD-
FMIXd)

Casein 200.00 233.07 224.14 224.14

Sucrose 100.00 201.38 195.73 175.73

Dextrose 132.00 116.54 116.54 116.54

Corn Starch 397.50 84.84 0.00 0.00

Cellulose 50.00 58.27 58.27 58.27

Soybean Oil 70.00 29.13 29.13 29.13

Fermented Skim milk 0.00 0.00 100.00 100.00

Red Ginseng Extract 0.00 0.00 0.00 10.00

Black Raspberry Extract 0.00 0.00 0.00 10.00

Lard 0.00 206.85 206.26 206.26

Mineral (Ca.P free) 35.00 52.44 52.44 52.44

Vitamin Mix 10.00 11.65 11.65 11.65

L-Cystine 3.00 3.50 3.50 3.50

Choline Bitartrate 2.50 2.33 2.33 2.33

a)ND: normal diet group (AIN-93G)
b)HFD: high fat-diet 45 Cal% group
c)HFD-FSM: HFD with fermented freeze-dried 10% skim milk powder 
(FSM) diet
d)HFD-FMIX: HFD with fermented freeze-dried mixture powder (10% 
skim milk, 1% red ginseng extract, and 1% black raspberry extract: FMIX) 
diet group
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week for 6 weeks. Feed efficiency was calculated by dividing 
the weight gain by the dietary intake. The body weight 
was daily monitored at 10:00 am for a week from the first 
experiment day. The change in body weight was calculated by 
the following equation:

Feed efficiency ratio = Weight gain (g)/Dietary intake (g)

Fat gain and change in the fat cell size
At the end of the experiment, the periepididymal fat and 

perirenal fat were obtained from each group and weighed to 
check the amount of fat gain. Some epididymal adipocytes 
were fixed with Bouin’s solution and soaked in 20% sucrose 
overnight, and then 20-μm frozen sections were obtained for 
Oil Red O staining using the free floating method to observe 
the changes in the adipocyte size. 

Change in the blood glucose and levels of obesity-related 
hormones in the serum 

After the end of the experiment, mice from each group 
were sacrificed and their blood was collected to measure the 
blood glucose level using the blood analysis kit (Asan Pharm, 
Seoul, Republic of Korea), and the anti-obesity effect was 
observed physiologically. 

ELISA analysis was conducted to observe the physiological 
anti-obesity effect of adiponectin, which includes adipocyte 
differentiation-related hormone in the serum (using mouse/
rat adiponectin ELISA kit, Shibayagi, Japan), leptin (using 
mouse leptin ELISA kit, KOMA Biotech, Korea), and 
insulin (using mouse insulin ELISA kit, Shibayagi, Japan). 
The concentration of adiponectin in the blood was measured 
by Enavall and Perlmann method [13] using mouse/rat 
adiponectin ELISA kit (Shibayagi Co., Ltd,  Japan). All 
the analyses were conducted following the manufacturer’s 
instructions. The absorbance was measured at 450 nm using 
ELISA reader. 

Statistical analysis
All results were expressed as the average and standard 

deviation using SPSS 12.0 for Windows (SPSS Inc., USA), and 
one-way analysis of variance (ANOVA) was applied. In order to 
verify the differences between each group, non-paired t-test was 
performed. The significance was assessed at p < 0.05. 

Results
Change in body weight, dietary intake, and feed efficiency

After 6 weeks, the body weights of the mice were measured 
and compared among the groups (Figure 1). The average body 
weight per mouse in the ND and HFD groups was 5.42 ± 1.43 g 
(22.6% increase compared to that before the experiment) and 
8.94 ± 3.01 g (37.9% increase compared to that before the 
experiment), respectively. The body weight of HFD-induced 
obese mice significantly increased by 64.9% compared to that 
reported for the ND group mice (#, p < 0.01). The body weights 
in the HFD-FSM and HFD-FMIX groups were 8.09 ± 1.88 g 
(33.4% increase compared to that before the experiment) and 
5.42 ± 1.02 g (22.5% increase compared to that before the 
experiment), respectively. The weight of mice in the HFD-
FMIX group significantly decreased by 39.4% compared to 

that reported for the HFD group mice (*, p < 0.01). 

Dietary intake and feed efficiency are shown in Table 2. 
The daily feed intake in the ND and HFD groups was 3.06 
± 0.16 g and 2.72 ± 0.14 g per mouse, respectively, showing 
significant reduction in the HFD group compared to the ND 
group (#, p < 0.01). The feed intake in the HFD-FSM group 
and HFD-FMIX group was 2.77 ± 0.10 g and 2.74 ± 0.19 g, 
respectively.

The feed efficiencies of the ND and HFD groups were 
0.042 and 0.077, respectively. The feed efficiency of the HFD 
group was significantly higher than that of the ND group (#, 
p < 0.01). The feed efficiencies of the HFD-FSM and HFD-
FMIX groups were 0.068 and 0.047, respectively. The feed 
efficiency of the HFD-FMIX group was significantly lower 
than that of the HFD group (*, p < 0.01).

Fat gain and change in the fat cell size
The weights of periepididymal fat and perirenal fat 

after the 6-week experimental period are shown in Figure 2. 
Periepididymal fat weight was 0.39 ± 0.105 g in the ND group 
and 0.66 ± 0.278 g in the HFD group, showing 69.2% weight 
gain in the HFD group relative to the ND group. The weight 
of periepididymal fat in the HFD-FMIX group was 29.4% 
lower than that in the HFD group. The weights of perirenal 
fat in the ND group and HFD group were 0.06 ± 0.032 g 

Figure 1: Total body weight of mice fed experimental diets for 6 weeks. ND, 
normal diet group; HFD, high-fat diet group; HFD-FSM, high-fat diet 
containing fermented skim milk (L. acidophilus and 10% skim milk); HFD-
FMIX, high-fat diet containing the fermented mixture (L. acidophilus, 10% skim 
milk, 2% red ginseng concentrate, and Rubus coreanus Miquel extract). Values 
are significantly different from the normal group (ND) (#) and control group 
(HFD) (*); #, p < 0.01; *, p < 0.01.

Table 2: The effect of HFD-FSM and HFD-FMIX on daily body weight 
and feed intake, and feed efficiency ratio (FER) in high fat diet-fed mice.

Groups Increase in the 
daily body weight (g)

Daily feed intake (g) Feed efficiency 
ratio

ND 0.13 ± 0.041) 3.06 ± 0.16 0.042

HFD 0.21 ± 0.04#2) 2.72 ± 0.14# 0.077#

HFD-FSM 0.19 ± 0.03 2.77 ± 0.10 0.068

HFD-FMIX 0.13 ± 0.06*3) 2.74 ± 0.19 0.047*

1)Values represent the mean ± s.d. (n = 6/group) of mice fed experimental 
diets for 6 weeks
2)Values are significantly different from the normal group (ND) (#, p < 0.01)
3)Values are significantly different from the control group (HFD) (*, p < 0.05) 
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and 0.19 ± 0.108 g, respectively. The perirenal fat weight of 
the HFD group significantly increased by 67% compared to 
that observed for the ND group (#, p < 0.05). The perirenal fat 
weight of the HFD-FMIX group (0.09 ± 0.036 g) decreased 
by 50% compared to that reported for the HFD group; 
however, it was not significantly different. In conclusion, the 
total weight gain of periepididymal fat and perirenal fat in the 
ND group and HFD group was 0.45 ± 0.138 g and 0.85 ± 
0.385 g per mouse, respectively. The total fat weight of the 
HFD group increased by 88.0% compared to that reported 
for the ND group. In the HFD-FSM group and HFD-FMIX 
group, the total weights were 0.97 ± 0.249 g and 0.56 ± 0.167 g 
per mouse, respectively. The total fat weight of the HFD-MIX 
group decreased by 34.1% compared to that reported for the 
HFD group.

The change in the adipocyte size is shown in Figure 3. The 
adipocyte size in the HFD group increased compared to that 
in the ND group. In the HFD-FMIX group, the size of the 
adipocytes decreased compared to the HFD group or HFD-
FSM group.

 

Change in blood glucose level
At the end of the 6-week study, the serum glucose 

concentration was measured and is shown in Figure 4. The 
concentration of serum glucose was 97.2 ± 2.8 mg/dL in 
the ND group and 101.3 ± 1.7 mg/dL in the HFD group. 
There was no significant difference in the serum glucose level 
between the ND and HFD groups. The serum glucose level in 
the HFD-FSM group and HFD-FMIX group was 105.3 ± 
3.8 mg/dL and 71.3 ± 2.7 mg/dL, respectively, whereas that in 
the HFD-FMIX group was significantly lower than the levels 
in the HFD group (*, p < 0.01).

Change in serum levels of adipocyte-related proteins and 
hormones 

After the 6-week experiment, the serum concentration of 
leptin, adiponectin, and insulin was evaluated and is shown in 
Figure 5. The concentrations of leptin in the ND, HFD, HFD-
FSM, and HFD-FMIX groups were 480.0 ± 8.5 pg/mL, 607.5 
± 12.5 pg/mL, 896.6 ± 29.4 pg/mL, and 243.0 ± 2.5 pg/mL, 
respectively. The leptin levels in the HFD group significantly 
increased compared to that in the ND group (##, p < 0.01). 
In contrast, the leptin levels in the HFD-FMIX group 
significantly decreased by 60.0% compared to that in HFD 
group (***, p < 0.001).

The serum adiponectin concentrations in the ND group 
and HFD groups were 27.47 ± 0.56 μg/mL and 10.43 ± 0.53 
μg/mL, respectively. The adiponectin concentration in the HFD 
group was significantly lower than that in the ND group (###, p < 
0.001). The adiponectin concentrations in the HFD-FSM group 
and HFD-FMIX group were 9.23 ± 1.36 μg/mL and 14.18 ± 
1.43 μg/mL, respectively. The HFD-FMIX group exhibited 
36.0% increase in adiponectin concentration compared to the 
HFD group (**, p < 0.01). The serum insulin concentrations 
in the ND, HFD, HFD-FSM, and HDF-FMIX groups 
were 10.5 ± 0.1 μIU/mL, 52.4 ± 0.9 μIU/mL, 53.4 ± 1.3 μIU/
mL, and 48.2 ± 0.2 μIU/mL, respectively. The insulin level in 
the HFD group significantly increased to 399.0% compared 
to that in the ND group (#, p < 0.05). The HFD-FMIX 
group exhibited significant reduction (8.0%) in insulin level 
compared to the HFD group (*, p < 0.05). 

Free amino acid content in the FSM and FMIX
Amino acids in FSM and FMIX are the major 

fermentation products with anti-obesity effects in this study. 

Figure 2: Periepididymal and perirenal fat weight of mice fed experimental 
diets for 6 weeks. ND, normal diet group; HFD, high-fat diet group; HFD-
FSM, high-fat diet containing fermented skim milk (L. acidophilus and 10% 
skim milk); HFD-FMIX, high-fat diet containing the fermented mixture  
(L. acidophilus, 10% skim milk, 2% red ginseng concentrate, and Rubus coreanus 
Miquel extract). Values are significantly different from the normal group (ND) 
(#) and control group (HFD) (*); # ,p < 0.05.

Figure 3: The size of the adipocytes in periepididymal fat in mice fed 
experimental diets for 6 weeks. ND, normal diet group; HFD, high-fat diet 
group; HFD-FSM, high-fat diet containing fermented skim milk (L. acidophilus 
and 10% skim milk); HFD-FMIX, high-fat diet containing the fermented 
mixture (L. acidophilus, 10% skim milk, 2% red ginseng concentrate, and Rubus 
coreanus Miquel extract).

Figure 4: Serum glucose concentration in mice fed experimental diets for 6 
weeks. ND, normal diet group; HFD, high-fat diet group; HFD-FSM, high-fat 
diet containing fermented skim milk (L. acidophilus and 10% skim milk); HFD-
FMIX, high-fat diet containing the fermented mixture (L. acidophilus, 10% skim 
milk, 2% red ginseng concentrate, and Rubus coreanus Miquel extract). Values 
are significantly different from the normal group (ND) (#) and control group 
(HFD) (*); **, p < 0.01.
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The content of total free amino acids in FSM and FMIX 
was 4844.18 mg/L and 6341.28 mg/L, respectively (Table 3). 
Among the eighteen different free amino acids, the content of 
seven amino acids (aspartic acid, threonine, serine, asparagine, 
GABA, ornithine, and arginine) in FMIX was significantly 
different from that in FSM. Out of the seven free amino acids 
in FMIX, arginine was detected at a higher level, 836.28 mg/L. 

Discussion
In this study, the anti-obesity effect of the mixture of skim 

milk, red ginseng, and raspberry extract fermented by Kimchi-
derived L. acidophilus was evaluated in vivo. Adult mice were 
administered the fermented mixture for 6 weeks and various 
obesity-related physical and biochemical measures were tested. 
The results demonstrated that (1) supplementation with the 
fermented mixture reduced body weight, total fat weight, and 
adipocyte size in obesity-induced mice, and (2) administration 
of the fermented mixture to obese mice increased the level of 
plasma adiponectin and decreased the levels of plasma leptin 
and insulin. 

Leptin is positively correlated with the adipocyte size [14, 

15], but plasma adiponectin is negatively correlated with leptin, 
fasting insulin concentration, body mass index (BMI), and fat 
mass [16-18]. Adiponectin, an adipocytokine produced by 
adipocytes, activates energy metabolism by increasing insulin 
sensitivity and promotes fat oxidation of skeletal muscle [19-
21]. Thus, the elevated plasma adiponectin level in the HFD-
FMIX group may be correlated with reduced body weight and 
fat mass. 

Insulin regulates blood glucose concentrations [22, 23]. 
Consumption of carbohydrates causes an immediate increase 
in blood glucose levels, followed by the release of insulin from 
pancreatic β cells. Insulin binds cell surface receptors in the 
liver, skeletal muscle, and adipose tissues and reduces the blood 
glucose levels. In addition, insulin can influence plasma leptin 
concentration; these two hormones act together in the brain to 
affect the homeostatic systems [24]. In this study, the HFD-
FMIX group showed reduced plasma insulin levels compared 
to the HFD group. It is still unclear whether supplementation 
with the fermented mixture had a direct effect in decreasing 

Figure 5: Change in the serum leptin, adiponectin, and insulin concentrations 
in mice fed experimental diet for 6 weeks. (A); leptin, (B); adiponectin, (C); 
insulin. ND, normal diet group; HFD, high-fat diet group; HFD-FSM, high-
fat diet containing fermented skim milk (L. acidophilus and 10% skim milk); 
HFD-FMIX, high-fat diet containing the fermented mixture (L. acidophilus, 
10% skim milk, 2% red ginseng concentrate, and Rubus coreanus Miquel extract). 
Values are significantly different from the normal group (ND) (#) and control 
group (HFD) (*); #, p < 0.05; ##, p < 0.01; ###, p < 0.001; *, p < 0.05; **, p < 
0.01; ***, p < 0.001.

Table 3: Free amino acid contents of the FSM and FMIX.

Amino acid SM-MIX1) FSM2) FMIX3)

Aspartic Acid
240.10 ± 4.80 

b3)
ND 4) 460.54 ± 21.31a

Threonine 48.23 ± 6.13b 169.79 ± 9.03 c 219.06 ± 43.67 a

Serine 119.94 ± 0.44b 65.85 ± 3.85 c 167.74 ± 34.62 a

Asparagine
1261.64 ± 

45.64a
ND

1143.82 ± 
18.18 b

Glutamic Acid 236.61 ± 21.88c
1264.84 ± 

51.52 a
942.88 ± 30.71 b

Glycine 42.48 ± 3.13 b 131.29 ± 4.81 a 145.99 ± 27.20 a

Alanine 119.62 ± 7.53 c 669.39 ± 26.97 a 476.19 ± 87.46 b

Valine 73.08 ± 23.32 c 378.14 ± 13.49 a 294.63 ± 74.60 b

Methionine ND 54.61 ± 6.73 ND

Isoleucine 37.78 ± 2.52 c 164.51 ± 5.66 a 132.20 ± 29.56 b

Leucine 64.45 ± 3.81 c 750.88 ± 25.91 a 587.34 ± 45.27 b

Tyrosine 48.13 ± 1.18 b 125.33 ± 6.47 a 107.95 ± 25.49 a

Phenylalanine 33.83 ± 2.28 b 283.41 ± 11.07 a 261.30 ± 51.65 a

GABA 170.90 ± 4.47 b ND 309.72 ± 19.99 a

Histidine ND 145.81 ± 4.96 a 67.14 ± 12.25 b

Ornithine 8.55 ± 1.16 b 8.03 ± 0.89 b 20.44 ± 4.72 a

Lysine 29.35 ± 1.00 b 317.97 ± 11.04 a 168.06 ± 31.99 b

Arginine 329.90± 6.97 b 314.33 ± 11.99 b 836.28 ± 24.04 a

Total 2864.59 4844.18 6341.28
1)SM-MIX: 10% skim milk media with 1% Bokbunja and 1% red ginseng 
extract before fermentation
2)FSM: 10% skim milk media fermented by L. acidophilus
3)FMIX: 10% skim milk media with 1% Bokbunja and 1% red ginseng 
extract fermented by L. acidophilus
3)Data are presented as a mean ± standard deviation. Means with the same 
alphabet in each column are not significantly different at p < 0.05 using 
one-way ANOVA
4) ND = Not detected.
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insulin. 

However, multiple studies reported that treatment with 
red ginseng extract or its functional constituents, saponins, 
led to a reduction in the mRNA levels of angiogenic factors 
(e.g., VEGF-A and FGF-2) and matrix metalloproteinases 
(MMPs) (e.g., MMP-2 and MMP-9), and the expression 
of hypothalamic neuropeptide Y (NPY) in vivo [2-4, 25]. In 
addition, immature black raspberry contains large amounts of 
ellagic acid, which can regulate the protein levels of Nrf2, NF- 
κB and CPT1 in an HFD-induced rat model of metabolic 
syndrome [26], and has anti-obesity effects [27]. Therefore, 
it is speculated that the anti-obesity effect in the HFD-
FMIX group might be correlated with the presence of various 
biologically active saponins in the red ginseng extract and 
phenolic compounds in the black raspberry extract. 

L. acidophilus is associated with cholesterol absorbance 
and regulation of intestinal microflora [28, 29]. However, in 
our experiments, L. acidophilus did not appear to exert an anti-
obesity effect. No significant differences were observed in any 
obesity-related measurements between the HFD-FSM group 
and the HFD group. 

In terms of free amino acid contents, significant differences 
were observed between the FSM and FMIX. Arginine exerts 
an anti-obesity effect, reduces fat content, and inhibits the 
growth of white adipose tissue [30]. The anti-obesity effect 
of HFD-FMIX may be attributed to amino acids such as 
arginine. Therefore, the anti-obesity effect of HFD-FMIX is 
likely to be attributed to red ginseng saponins, phenolic acids 
in immature black raspberry, and high content of free amino 
acids in the FMIX fermented by L. acidophilus. 

In conclusion, supplementation with a fermented mixture 
of skim milk, red ginseng, and immature black raspberry 
extract had an anti-obesity effect in a mouse model of obesity. 
This suggests that fermented materials combined with 
functional edible plant and probiotics could be applied for the 
development of anti-obesity functional foods.
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