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Abstract
Spermidine (SPD) is an important signal molecule relate to protein food 

safety, but vulnerable to interference during detection. Here, an electrochemical 
sensor system for the spermidine detection was developed by a self-assembled 
molecularly imprinted polymer (MIP) film coated on disposable screen-
printed electrodes. The modification imprinted polymer was prepared with 
template molecules SPD and functional monomer meth acrylic acid (MA) with 
molar ratio 1:4 through ultraviolet polymerization. The cyclic and differential 
pulse voltammetry (CV and DPV) scanning showed that the best adsorption 
equilibrium time of the modified electrodes was 360 s. The electrodes exhibited 
good linear relationship ranging from 1.0 × 10−6 mol/L to 5.0 × 10−6 mol/L (y 
= −1.22x+7.82, R2 = 0.9952), and the detection limit was 1.7016 × 10−7 mol/L. 
When take high concentration of histamine and tyramine as interfering 
components, the modified electrodes detection relative standard deviation was 
< 5% and thus proved good anti-interference ability. In addition, the density 
function theory (DFT) calculation explored the intera-molecular interaction 
of SPD-MA imprinted complex, and the simulation showed that the prepared 
device can keep recognition stability under the potential difference stress range 
from 0 to 0.005 a.u. Therefore, the prepared system has the potential for rapid 
detection spermidine in the place.
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Introduction
Spermidine (SPD) was biosynthesized by putrescine and methionine in 

vivo [1], which involved multifunction in life activities, promotes cell growth 
and lower blood pressure. It was widely present in a variety of foods (e.g., ripe 
cheese, pulses, mushrooms, and whole grains) [2-4], and Figure 1 shows structure 
schematic. In vivo, spermidine act as physiological blockers of inward rectifier 
K+ channels [5], increase autophagy-related gene transcription to expand the 
lifespan of model creatures [6, 7]. More importantly, as a common biogenic 
amine, spermidine related many to food safety [8]. The spermidine levels in meat 
products can reflect the freshness and spoilage degrees [9, 10], microbe species 
and count [11]. During food processing, the nitrite compounds in meat can 
form carcinogenic nitrosamines with spermidine [12]. Many studies provide that 
spermidine accumulated in rats has subacute toxicity (600 mg/Kg) and a strong 
stimulating effect on the mucosa [13], and high concentration of spermidine 
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in the patient body fluids related to various cancer potential 
[14]. Hence, the accurate and rapid detection of spermidine 
concentration in vitro and in vivo samples is necessary.

At present, the biogenic amines detection strategies 
including gas chromatography (GC), thin layer chromatography 
(TLC), ultra-high-performance liquid chromatography 
(UHPLC), ion chromatography, mass spectrometry (MS), and 
optical sensors [15-19]. However, most of these methods have 
disadvantages in rapid detection in place. Electrochemical 
sensors with the advantage of efficient and convenience has 
applied to trace food risk substance detection, which transform 
the concentration response changes into sensitive and sharp 
electrical signals. The advanced electrochemical techniques, 
such as Au or carbon nanoparticle-modified electrodes, 
pulsed amperometric detection, capillary electrophoresis 
electrochemiluminescence [20, 21]. And the latest methods 
such as the carbon dots (CDs), fluorescent sensor, smart visual 
detection and enzymatic biosensors [22-24]. However, these 
methods were insufficient to recognition target substance 
specificity [25]. The molecularly imprinted polymer (MIP), 
which can specifically adsorb target molecules, was obtained 
by the polymerization between the template molecule and 
functional monomer with the aid of a crosslinking agent [26]. 
And there exist many MIP modified electrode sensor devices, 
such as carbon electrode [27, 28], functioned graphene 
electrode [29], coated silica [30]. But these sensor systems also 
have the shortage of rapid synthesis efficiency. Screen printing 
is a kind of stencil printing, “probe molecules” can transfer to 
the substrate “holes” under pressure, the electric probe can 
induce oxidation reduction reaction and current change on the 
electrode surface. Screen printed imprint modified electrode 
was widely used in many rapid detection fields [31].

In order to improve the spermidine detection above, we 
prepared a disposable biosensor based on the screen-printed 
electrodes, the electrodes modified with imprinted polymer 
can specific identification spermidine in the presence of 
interferences. The polymer was directly polymerized on the 
electrode surface with functional monomer meth acrylic acid 
assist by the crosslinking agent ethylene glycol dimethacrylate, 
and the electron acceptor K3[Fe(CN)6] was used as a typically 
probe substance because it was a good electrical conductor. 
Moreover, considered the potential difference occurs 
periodically at the electrode cyclic voltammetry detection 
response process [32, 33], and the induced electric field effect 
may impact the structural stability of the imprinted complex, 
the density function theory (DFT) calculation was used for 
electronic structure parameters and intra-molecular weak 
interaction analysis. Over all, our work can provide a certain 
reference for the preparation of spermidine rapid detection 
devices (Figure 1).

Materials and Methods
Reagents and instruments

Spermidine and histamine (purity 98%; Sigma-Aldrich, 
USA), tyramide and meth acrylic acid (purity 99%; Sigma-
Aldrich, USA), ethylene glycol dimethacrylate (purity 98%; 

Sigma-Aldrich, USA), azobisisobutyronitrile (analytical 
grade; Chengdu Gresia Chemical Technology Co., Ltd. 
China), potassium ferricyanide (analytical grade; Tianjin 
Kemico Chemical Reagent Co., Ltd. China), nitrogen 
(Guizhou Yong-sheng Industrial Gas Company, China), and 
screen printing electrode (Kim Kun Biological Engineering 
Co., Ltd., Wuxi City, China).

WYH-2 water bath oscillator ( Jintan Jing-da Instrument 
Manufacturing Co., Ltd.China), HH-W420 constant 
temperature water bath (Xing-tai Runlian Machinery Co., 
Ltd. China), SB-100D ultrasonic cleaner (Ningbo Xinzhi 
Biotechnology Co., Ltd. China), FA2004B electronic analysis 
balance (Shanghai Velvet Instrument Co., Ltd. China), and 
CHI604E electrochemical workstation (Shanghai Chen Hua 
Instrument Co., Ltd. China).

Methods
Screen printed electrodes pretreatment

The electrode was first immersed at 20% H2O2 solutions 
for 20 min and then at 20% H2SO4 for 20 min to clean the 
dust and oxidation on the surface. Then, the electrode was 
continuously soaked with deionized water for 20 min, and 
then dried and preserved at 4°C for further use.

Electrodes buffer preparation
The K3[Fe(CN)6] phosphate buffer solution with the 

concentration of 0.5 mmol/L and pH of 7.0 was prepared 
using 1.646 g potassium ferricyanide standard and 0.2 mol/l 
phosphate buffer. The 0.2 mol/L phosphate buffer solution 
was prepared by adding 39 ml of 0.2 mol/L NaH2PO4 and 61 
mL of 0.2 mol/L Na2HPO4 in a beaker.

Spermidine molecularly imprinted polymer film preparation
Based on our previous work [34], choose the theory 

calculated optimum molar ratio of template molecules 
spermidine to the functional monomer methacrylic acid 1:4 
as the experimental polymerization ratio. Accurately weighed 
217.5 mg spermidine and 100 mg azobisisobutyronitrile, 
accurately measured 510 mL of meth acrylic acid and 2 mL 
of ethylene glycol dimethacrylate, mixed in a beaker. Then, 
50 mL of carbon tetrachloride solution were added, and 
the solution was placed in 100 W ultrasonic cleaners for 
dissolution, nitrogen was bubbled to remove dissolved oxygen 
within the solution system. For polymerization, take 1.5 µL 
polymerization solution and dropped into the working area of 
the screen-printed electrode covered with cover glass to isolate 
oxygen and form a uniform film. Note that the cover glass 
should be used for covering to ensure that the polymerization 
solution cover the reference electrode and prevent impact, and 
the entire dropping and glass slide covering steps must be 
performed as quickly as possible to avoid rapid evaporation 
of carbon tetrachloride. Then, placed modified electrode in 
an incubator at 4 °C and irradiated with 365 nm UV lamp 
at a distance of < 10 cm to polymerization for 96 h. After 

Figure 1: Schematic of spermidine structure.
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polymerization was completed, a waxy surface layer was 
formed on the electrode surface. The prepared modified 
electrodes were stored at 4 °C for next steps.

Spermidine-imprinted modified electrode elution time
The prepared spermidine-imprinted electrode was soaked 

into 10% methanol acetic acid solution (v/v = 9:1), and stirred 
gradually for elution spermidine molecules. In order to avoid 
excessive elution MIP layer, the stirring intensity should not 
be too strong. The DPV scanning method was used every 60 s 
after 60 s of elution in the range of -0.6 V~0.8 V. 

Spermidine-imprinted modified electrode adsorption time
Equilibrium adsorption time can reflect the electrode 

detection speed. The specific adsorption of spermidine on 
imprinted modified membrane electrodes was dynamic 
adsorption equilibrium process through intermolecular weak 
intermolecular interactions [35]. The spermidine-imprinted 
modified electrode was placed into the buffer solution for 
adsorption test, and the adsorption time interval was 60 s. 
After adsorption, the spermidine remaining on the surface was 
washed with distilled water. Then, the electrode was inserted 
into the spermidine-free buffer to perform DPV scan at range 
of −0.8~1.0 V, record the peak current and plot it versus time.

Spermidine-imprinted modified electrode detection limit 
The lower detection limit of the electrode, the more 

detection sensitivity of the electrode. After elution, the 
imprinted modified electrodes were placed in adsorption 
solution at series concentration 1, 2, 3, 4, 5 µmol/L. The 
saturated adsorption time was referenced with the adsorption 
equilibrium time (360 s), and the current changed was detected 
by DPV scanning in the range of −0.8~1.0 V. Plot the standard 
curve with the response values and spermidine concentration. 
The detection limit was determined by formula: DL = 3δb/K, 
where δb is the standard deviation (SD) of blank parallel 
determination (10 times) and the calculated values, and K is 
the slope of the standard curve [36].

Interference experiment
Molecularly imprinted polymers can adsorb the target 

substance by geometric and structural matching principles 
[36]. Tyramine and histamine, similar in shapes and groups 
of spermine, were selected as interfering components. First, 
a buffer solution containing 1.0 × 10−6 mol/L SPD was 
prepared in 2 beakers, and 50-fold molar tyramine and 
histamine concentrations were added. The eluted spermidine 
imprinted polymer modified electrode was placed in a beaker 
for adsorption. The adsorption time was referenced with the 
adsorption equilibrium time. For check the occupied conditions 
of eluted holes on SPD, after adsorption was completed, the 
buffer solution was subjected to DPV scanning, and the results 
were compared with the current changes.

DFT theory calculations
The DFT calculation was used to simulation and explore 

the electrode modification material molecular imprinted 
complex (SPD and MA with best polymerization ratio 
1:4) structural stability under the external electric field. The 
geometry optimization with frequency vibration analysis of 
the SPD-MA complex were performed on the B3LYP/6-

311G (d, p) theory level at gas phase, and the keywords 
nosymn fixed the SPD-MA complex oriented at the external 
electric filed direction. The external electric field was set 
at SPD-MA complex cartesian coordinates X axis with 
intensity values 0, 0.001, 0.002, 0.003, 0.004, 0.005 a.u (1.a.u 
= 51.423V/angstrom), which range from 0V/angstrom to 
0.25V/ angstrom. The single point energy was calculated at 
M062X/def2TZVP level based on the optimized structure 
with on imaginary frequency. For thermodynamics data, the 
vibrational zero-point energies (ZPEs) scale factors was 0.988.

Bader’s Atoms in Molecules (AIM) theory states that the 
electron density distribution is related to the chemical bond 
type. The bond critical point (BCP) occurs between attractive 
atom pairs, the most important was hydrogen bond donor and 
acceptor atoms. For small interacting monomers, the strength 
of hydrogen bonds (EHB) can be reasonable characterized 
by binding energies (BEs). And the BEs of neutral hydrogen 
bond has the fitted equation with electron density at the 
corresponding bond critical point (BCP).

						           (1)

where the unit of 𝜌 is a.u., the unit of BE is kcal/mol [37]. 

In order to visualization the inter-molecular weak 
interactions at SPD-MA complex BCPs, the independent 
Gradient Model (IGM) for non-covalent interaction (NCI) 
analysis was also performed. All the DFT theory calculations 
were performed on the Gaussian 16 (Revision A. 03) package 
support by the Guizhou University High performance 
computing cluster [38]. The BCP and IGM analysis of SPD-
MA complex was finished by Multiwfn 3.8 suites on the 
personal computer [39].

Results and discussion
Spermidine-imprinted modified electrode elution time and 
stability

When elution imprinted polymers with buffer solution, 
it generated “holes” that allow the probe electric substance 
pass through. When detection, the film-modified electrode 
absorbed spermidine immediately and blocked the “holes”, 
thus the probe K3[Fe(CN)6] cannot pass through [40]. The 
electrode elution was at 10% methanol acetic acid solution (v/v 
= 9:1). In order to measure the current changes of the modified 
electrode elution process, the DPV scan was performed at the 
scan range of -0.8 ~1.0 V, the result is shown in figure 2. 

The stability of modified electrode was also crucial 
to the subsequence results. Many studies show that the 
electrode surface was not absolutely smooth [41], thus make 
the MIP films coated on the surface tightly during the UV 
polymerization process. Furthermore, after elution, a three-
dimensional network porous structure formed on the MIP 
modified electrode surface. And the network porous, which 
cross-linked each other and adhered to the rough electrode 
surface through molecular force interaction [42]. The electrode 
potential stability of the bare electrode, eluted electrode, un-

BE≈ -223.08 x ρ(BCP) +0.7423
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eluted electrode in buffer solution (contain the probe substance 
K3[Fe(CN)6]) was also measured at the same conditions by 
CV scan, and the result was at figure 3.

As shown in figure 2, the response current was only almost 
3.0 μA at the begin of elution. In this imprinting stage, the 
polymer film was assembled on the electrode surface, and 
the spermidine wrapped in the pores that formed by the 
functional monomer and crosslinking agent. Only few holes 
present on the electrode surface were still open, thus make 
probe substance K3[Fe(CN)6] cannot pass through because 
eluted cavities were occupied by spermidine molecules, and the 
electrodes cannot specifically detect spermidine because the 
current transportation pathway was obstructed. When eluted 
the template molecular spermidine, the movable K3[Fe(CN)6] 
probe and the electrode surface process redox reaction and 
exhibited electrical signals. From figure 2, As the elution time 
increase, the current upped significantly from 1000 s to 4000 s, 
indicated the spermidine was gradually eluted from the pores. 
During the stage, the imprinted modified electrodes also can 
adsorption spermidine from the mixed solution by specific 

recognition ability, and the reabsorbed spermidine molecules 
binding the pores against with the K3[Fe(CN)6] molecule to 
keep a dynamic equilibrium. Given that spermidine was not 
electrostatic substance, the current flow generated on the 
electrode surface is reduced [43]. As shown in figure 2, the 
increased current tends to stabilize at 4200 s, which may point 
to the end of elution. Considered that the current of the entire 
system ranging from 4200 s to 5700 s only increased 0.2 µA, 
the elution termination time was set at 4200 s. 

In figure 3, bare electrodes possessed the largest scan peak 
because the surface was uncovered with the imprinted polymer, 
and the K3[Fe(CN)6] in solution contacted abundantly on 
the electrode surface. When the electrode work area surface 
was covered by molecularly imprinted polymer, the un-eluted 
polymer blocked the pores by spermidine on the electrode 
surface. Hence, K3[Fe(CN)6] cannot contact the electrode 
surface to undergo redox reaction and electron transfer, causing 
the smallest peak current generated. The peak current of the 
eluted electrode was smaller than the bare electrode because 
the imprinted polymer itself coated on the electrode working 
area. In above, the electrode peak current sequence satisfied: 
bare electrode > eluted electrode > un-eluted electrode. This 
illustrated that the un-eluted electrode passed through the 
smallest amount of K3[Fe(CN)6] , and the eluted electrode 
passing through K3[Fe(CN)6] was still smaller than the bare 
electrode.

Spermidine imprinted modified electrodes adsorption time 
The current changes of the electrode adsorption 

spermidine was in figure 4. The equilibrium adsorption time of 
the imprinted modified electrodes on spermidine was shown 
in figure 5.

From figure 4, after adsorption, the current of the modified 
electrode was lower than before and reached maximum peak 
values when the potential values near zero, which indicates 
the adsorption status has become saturated. The spermidine 
concentration in the sample solution can measured by the 
relationship between the scanned current and the spermidine 
adsorption gradient concentrations. As shown in the curve in 

Figure 4: DPV scan of SPD imprinted modified electrodes before and after 
adsorption.

Figure 2: Elution time of the imprinted modified electrodes.

Figure 3: CV scan of the three electrodes (Bare electrode, Uneluted 
electrode, Eluted electrode).
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figure 5, at first, the current value decreased rapidly and then 
gradually increased until reached equilibrium. This indicated 
that the nonspecific adsorption played an important role at 
the beginning of the adsorption process, and the specific 
adsorption occurred afterward. This was consistent to the 
adsorption and recognition of spermidine by molecularly 
imprinted polymer that at polymerization ratio of 1:4. And 
from figure 5, the response current value was decreasing along 
with the adsorption time because the spermidine molecules re-
adsorbed subsequently after the probe substance K3[Fe(CN)6] 
eluted from the imprinted polymer. The response current 
was close to equilibrium at 360 s, and in order to shorten the 
detection time, we defined the electrode adsorption time of 
spermidine sample solution as 360 s. Figure 5 shows that the 
current values decreased obviously after adsorption completely, 
this relate to the decrease of the electrode surface cavities and 
the amount of moveable K3[Fe(CN)6].

Spermidine imprinted modified electrode detection limit
The detection limit (DL) of prepared electrodes was 

performed with a series concentration adsorption solution (1, 

2, 3, 4, 5µmol/L) by DPV scan. The changes of the electrode 
response current with concentration was show in figure 6. 
The relationship curve of the current and concentration was 
in figure 6 sub figure. The linear equation was as follows: y = 
−1.22x+7.82, R2 = 0.9952. The detection limit was calculated 
by using the following equation: DL = 3δb/K, and get the 
electrode detection limit values 0.17016 µmol/L. From figure 
6, when the concentration > 5 µmol/L, the current changes 
not keep reduced because molecularly imprinted polymer 
film almost reached saturation adsorption at this time. The 
adsorption capacity cannot increase with the adsorption 
solution concentration. Therefore, the prepared electrodes 
possessed a good linearity ranging 1.0 × 10−6 mol/L to 5.0 × 
10−6 mol/L with the detection limit of 1.7016 × 10−7 mol/L. 
Similarly, the MIP modified carbon paste (CP) histamine 
detection electrode with meth acrylic acid and acetonitrile 
as porogens, shows the maximum linear response ranges was 
7 × 10−7 mol/L [44]. By contrast, the histamine detection 
limitation in canned tuna through molecularly imprinted 
polymers-surface enhanced Raman spectroscopy was 10−5 
mol/L [45]. The U.S. Food and Drug Administration set 
histamine limits in food in general at 4 × 10−4 mol/L [46], 
considered the convenient polymerization method and lower 
cost, our prepared electrode can be used to detection food 
spermidine content.

Interference experiment
The 50-fold spermidine concentrations (50.0 × 10−6 

mol/L) interference components tyramide and histamine were 
added to the buffer solution, and the solutions was scanned 
by DPV to obtain the current value changes. The result was 
shown in table 1.

Table 1 shows the relative standard deviation (RSD) was 
< 5%, indicated the presence of interference components effect 
little on the current change. As reported, the RSD of a surface 
plasmon resonance histamine sensor based on molecularly 
imprinted polymer film was range from 2.48% to 4.66% 
[47]. Moreover, the lowest RSD of imprinted fluorescent 
spermidine chemosensor at spiked serum was 3.5% [48]. 
Therefore, our prepared imprinted modified electrode 
possessed a good selective adsorption capacity for the target 
substance spermidine, because the eluted molecularly 
imprinted polymer specific adsorption sites cannot recognize 
the interfering substances. Hence, the interference substance 
cannot block the cavities. Furthermore, due to the specificity 

adsorption equilibrium of modified electrode only occurred 
on the target substance spermidine during the adsorption 
process. Therefore, the response current value of the interfering 
components group was very similar to the blank control group.

Table 1: Effect of interfering substance on SPD imprinted modified electrode.

Number
No interfering 

substances (µA)
With interfering 
substances (µA)

Relative standard 
deviation (%)

Spermidine/tyramine 7.71 7.85 1.83

Spermidine/histamine 7.71 7.55 2.06

Figure 5: SPD molecularly imprinted membrane electrodes adsorption 
time.

Figure 6: DPV scan of the SPD molecularly imprinted membrane electrode 
detection limit. (Sub figure for the calibration curve of the SPD molecularly 
imprinted membrane electrode).
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Structural stability of SPD-MA imprinted complexes
As many reports shows [49, 50], the hydrogen bond 

binding energy (∆Ebinding) donated the main intera-molecular 
weak interaction in MIP system, which was crucial for the 
stability of self-assembled supramolecular system. The atom 
in molecules (AIM) theory and independent Gradient Model 
(IGM) was widely used in intera-molecular non-covalent 
interaction (NCI) analysis. Similar to reduced density gradient 
function, the IGM can analyze NCI based on the electron 
density topology, and when define the isosurfaces as function 
S, there has the equation as follows [51]:

where ρ(r) represents the electron density (ED) and 
|∇ρ(r)| stands for the norm of the ED gradient vector. The 
basis of the Independent Gradient Model (IGM) is also ED 
gradient in terms of atomic components. When SIGM based 
on the |∇ρ(r) IGM|, the largest deviation of SIGM and S 
occurring at the bond critical point (BCP). Set the difference 
as function δg, δg(r) = |∇ρ(r)IGM|-|∇ρ(r)|. δg can divided 
into intramolecular interaction (δgintra) and intermolecular 
interaction (δginter). The figure 7 was the BCP combined 
IGM analysis of the SPD-MA complex, the green colours 
are identified as Van der Waals interaction and blue colours 
identified hydrogen bond.

Form the figure 7, it was clear that the SPD-MA complex 
with ratio 1:4 formed six hydrogen bonds at the corresponding 
BCP because of its abundant blue color isosurface areas. 

The hydrogen bonds numbers was consistent with our 
previous results, which was calculated under B3LYP/6-
31+(d,p) level [52]. By mapping the δg descriptor with the sign 
function sign (λ2) ρ, get the SPD-MA complex non-covalent 
interaction scatter plot at figure 8. Form the figure 8, it can be 
see that the blue hydrogen bond points were more than green 
Van der Waals interaction points, which was consistent with 

the IGM isosurface analysis results.

In general, the charge redistribution was related to bonding 
properties [53]. And the external electric field can impact the 
molecular structure by changing the charge distribution and 
molecular dipole. Combined the IGM analysis results, the 
intermolecular hydrogen bond at the BCP contributed most 
to the MIPs specific recognition ability. Therefore, we discuss 
focused on the hydrogen strength or binding energy here, and 
the results was list at table 2.

Form the table 2, all the SPD-MA molecular imprinted 
complex formed six hydrogen bonds under the external electric 
field range from 0 to 0.005 a.u. The hydrogen bond strength 
of O64-H65…N10, N10-H40…O21 and N1-H24…O75 was little 
decreased with the external electric field intensity increasing. 
While the EHB values of O62-H63…N1 and O76-H77…O61 
was little increased with the external electric field intensity 
decreasing. Compared with the 0.05 a.u results to 0 a.u 
outfield conditions, the EHB maximum changes was 8.26 kJ/
mol, which was only occupied 3.34% of total EHB values at 0 
a.u conditions. This indicated that electric field impact little on 
the SPD-MA molecular imprinted complex binding ability 
at the field intensity range from 0 to 0.005 a.u. Moreover, 
the effect of the external electric field on the whole complex 
system was not reasonable, because sum of the six hydrogen 
bonds strength was very similar at range of 0 to 0.005 a.u 
electric field, and the maximum changes was only 1.12 kJ/

Table 2: The hydrogen bond strength (EHB) of SPD-MA complex under 
the external electric field.

Hydrogen bond 0 a.u 0.001 
a.u

0.002 
a.u

0.003 
a.u

0.004 
a.u

0.005 
a.u

O20-H22…O15 -32.61 -32.5 -32.43 -32.54 -32.62 -32.65

O64-H65…N10 -67.88 -65.63 -63.88 -62.6 -61.27 -59.62

N10-H40…O21 -19.31 -19.36 -19.35 -19.14 -18.86 -18.45

O62-H63…N1 -70.42 -71.74 -72.58 -73.81 -75.89 -78.23

N1-H24…O75 -20.05 -19.78 -19.3 -18.42 -17.58 -16.64

O76-H77…O61 -32.67 -33.34 -34.21 -35.31 -36.04 -36.45

Total (kJ/mol) -242.95 -242.36 -241.76 -241.83 -242.26 -242.05

Figure 7: Non-covalent interaction (NCI) and BCP between SPD-MA 
complex (0 a.u, at gas phase). Bond critical points are shown as orange 
spheres. Bond paths are drawn as yellow paths. SPD-MA complex structure 
is represented as CPK model. Carbon, hydrogen, oxygen, nitrogen atoms is 
colored by cyan, white, red and blue, respectively. The dark blue oval region 
between the SPD and MA is isosurface of reduced density gradient (RDG) 
of 0.015 mapped by sign (λ2)ρ function.

Figure 8: The scatter plot of SPD-MA complex intra-molecular interaction.
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mol. The EHB analysis showed the electric field stability of our 
prepared molecular recognition device.

Conclusions
This study combined the molecularly imprinted modified 

electrode technology and the screen-printed established an 
electrochemical sensor for specific spermidine detection. The 
performance of the prepared electrodes was characterized 
by DPV scanning and adsorption trials, as well as elution 
equilibrium process. The elution equilibrium time of the 
template molecules spermidine was 4200 s, and the adsorption 
equilibrium time was 360 s. The modified electrodes possessed 
a good linear relationship ranging from 1.0 × 10−6 mol/L to 
5.0 × 10−6 mol/L (y = −1.22x + 7.82, R2 = 0.9952), and the 
detection limit was 1.7016 × 10−7 mol/L. The interference 
components showed the modified electrodes exhibited good 
anti-interference ability. The DFT calculations showed that 
the structural stability of SPD-MA imprinted complex 
changes little under the external electric filed at intensity 
range from 0 to 0.005 a.u, which indicated the prepared device 
can resistant to a certain level of potential difference stress. 
With the advantage of convenient, stable, and sensitive, the 
prepared spermidine detection electrodes avoid the complex 
sample processing steps, and provide a reference method on 
protein food safety evaluation.
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